RESUMEN
OBJECTIVE: To investigate the role of central obesity on immunometabolic response in peripheral blood mononuclear cells (PBMCs) from normal weight and overweight/obese young men. METHODS: Eighteen individuals were classified as normal weight (NW; n = 9 - age: 25 ± 5 and BMI: 21.4 ± 1.7) and overweight/obese (OW; n = 9 - age: 29 ± 7 and BMI: 29.2 ± 2.7). The body composition was evaluated by dual-energy x-ray absorptiometry (DXA), waist circumference, and visceral and subcutaneous fat depots by ultrasound. Physical activity levels, metabolic parameters, immune phenotypic characterization, cytokine production by lipopolysaccharide (LPS) -stimulated whole blood cells and LPS or phorbol 12-myristate 13-acetate (PMA)-stimulated PBMC, and mitochondrial respiration in PBMCs were evaluated. Expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma (PPAR-γ), nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR-4), hypoxia-inducible factor-1 alpha (HIF-1α), and adrenergic receptor beta 1 and 2 (AR-ß1 and ß2) genes were evaluated in cultured PBMC using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Individuals with overweight/obese (OW) presented higher glucose (P = 0.009) and leptin (P = 0.010) than individuals with normal weight (NW). PBMCs of OW under stimulation with LPS presented a lower production of interleukin-10 (IL-10) (P = 0.011) and macrophage inflammatory protein-1alpha (MIP-1α) (P = 0.048) than NW. Mitochondrial respiration rates were not different between NW and OW subjects. Cultured PBMCs in LPS-stimulated condition indicated higher gene expression of AR-ß2 in OW, while PMA-stimulated PBMCs presented lower expression of AMPK (P = 0.002) and higher expression of NF-κB (P=<0.0001) than NW. OW presented higher numbers of CD3+CD4+ T cells (P = 0.009) and higher expression of programmed cell death protein 1 (PD-1) in CD8+ T cells (P = 0.001) than NW. CONCLUSION: Central obesity promoted reductions in interleukin 10 production response and increase in AR-ß2 expressions in mitogen-stimulated PBMCs. Furthermore, central obesity altered the phenotype of PBMCs, also increasing the expression of PD-1 exhaustion markers in young adults.
Asunto(s)
Leucocitos Mononucleares , FN-kappa B , Masculino , Adulto Joven , Humanos , Adulto , FN-kappa B/metabolismo , Leucocitos Mononucleares/metabolismo , Sobrepeso , Estudios Transversales , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Obesidad Abdominal/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD8-positivos/metabolismo , Obesidad/metabolismo , Antiinflamatorios , FenotipoRESUMEN
Aim: This study aimed to evaluate if physical activity is associated with systemic and cellular immunometabolic responses, in young adults after mild-to-moderate COVID-19 infection. Methods: Mild- to- moderate post-COVID-19 patients (70.50 ± 43.10 days of diagnosis; age: 29.4 (21.9- 34.9) years; BMI: 25.5 ± 4.3 kg m2 n = 20) and healthy age-matched controls (age: 29.3 (21.2 - 32.6) years; BMI: 25.4 ± 4.7 kg m2; n = 20) were evaluated. Physical activity levels (PAL), body composition, dietary habits, muscular and pulmonary function, mental health, sleep quality, metabolic parameters, immune phenotypic characterization, stimulated whole blood and PBMC culture (cytokine production), mRNA, and mitochondrial respiration in PBMCs were evaluated. Results: The post-COVID-19 group exhibited lower levels of moderate to vigorous physical activity (MVPA) (p = 0.038); therefore, all study comparisons were performed with adjustment for MVPA. Post-COVID-19 impacted the pulmonary function (FEV1, FEV1%pred, FVC, and FVC %pred) compared with the control (p adjusted by MVPA (p adj) <0.05). Post-COVID-19 exhibited lower levels of serum IL-6 (p adj <0.01), whereas it showed higher serum IL-10, triglyceride, leptin, IgG, ACE activity, TNFRSF1A, and PGE2 (p adj <0.05) levels compared with controls. Post-COVID-19 presented a lower percentage of Treg cells (p adj = 0.03) and altered markers of lymphocyte activation and exhaustion (lower CD28 expression in CD8+ T cells (p adj = 0.014), whereas CD4+T cells showed higher PD1 expression (p adj = 0.037)) compared with the control group. Finally, post- COVID-19 presented an increased LPS-stimulated whole- blood IL-10 concentration (p adj <0.01). When exploring mitochondrial respiration and gene expression in PBMCs, we observed a higher LEAK state value (p adj <0.01), lower OXPHOS activity (complex I) (p adj = 0.04), and expression of the Rev-Erb-α clock mRNA after LPS stimulation in the post-COVID-19 patients than in the control (p adj <0.01). Mainly, PAL was associated with changes in IL-10, triglyceride, and leptin levels in the plasma of post-COVID-19 patients. PAL was also associated with modulation of the peripheral frequency of Treg cells and the expression of PD-1 in CD8+ T cells, although it abrogated the statistical effect in the analysis of TNF-α and IL-6 production by LPS- and PMA-stimulated PBMC of post-COVID-19 patients. Conclusion: Young adults after mild-to-moderate SARS-CoV-2 infection appeared to have lower physical activity levels, which can be associated with clinical and immunometabolic responses in a complex manner.
Asunto(s)
COVID-19 , Activación de Linfocitos , Adulto Joven , Humanos , Adulto , Linfocitos T CD8-positivos , Interleucina-10 , Interleucina-6 , Leptina , Leucocitos Mononucleares , Lipopolisacáridos , SARS-CoV-2RESUMEN
AIM: To analyze the consumption of oxygen and to quantify the mitochondrial respiratory chain proteins (OXPHOS) in the gastrocnemius muscle of rats exposed to cigarette smoke and/or RT practitioners. MAIN METHODS: Wistar rats were divided into groups: Control (C), Smoker (S), Exercise (E) and Exercise Smoker (ES). Groups F and ES were exposed to the smoke of 4 cigarettes for 30 min, 2× a day, 5× a week, for 16 weeks. Groups E and ES performed four climbs with progressive load, 1× per day, 5× per week, for 16 weeks. The gastrocnemius muscle was collected for analysis of OXPHOS content and oxygen consumption. Groups S (vs. C) and ES (vs. C and E) showed lower body weight gain when observing the evolution curve. KEY FINDINGS: The S rats showed a reduction in the NDUFB8 proteins of complex 1, SDHB of complex 2, MTC01 of complex 4 and ATP5A of complex 5 (ATP Synthase) compared to Group C. Additionally, S rats also showed increased consumption of O2 in Basal, Leak, Complex I and I/II combined measures compared to the other groups, suggesting that the activity of the mitochondria of these animals increased in terms of coupling and uncoupling parameters. SIGNIFICANCE: Our data suggest that exposure to cigarette smoke for 16 weeks is capable of causing impairment of mitochondrial function with reduced expression of respiratory chain proteins in skeletal muscle. However, the RT was effective in preventing impairment of mitochondrial function in the skeletal muscle of rats exposed to secondary cigarette smoke.
Asunto(s)
Fumar Cigarrillos , Entrenamiento de Fuerza , Humanos , Ratas , Animales , Ratas Wistar , Músculo Esquelético/metabolismo , Mitocondrias , Nicotiana/efectos adversos , Oxígeno/metabolismo , Adenosina Trifosfato/metabolismoRESUMEN
The palladium-salen complex was immobilized by electropolymerization onto a Pt disc electrode and applied as an electrocatalyst for the reduction of CO2 in an aqueous solution. Linear sweep voltammetry measurements and rotating disk experiments were carried out to study the electrochemical reduction of carbon dioxide. The onset overpotential for carbon dioxide reduction was approximately -0.22 V vs. NHE on the poly-Pd(salen) modified electrode. In addition, by combining the electrochemical study with a kinetic study, the rate-determining step of the electrochemical CO2 reduction reaction (CO2RR) was found to be the radial reduction of carbon dioxide to the CO adsorbed on the metal.
RESUMEN
This work presents a study of the formation mechanism of electrochemically deposited alternating layers of azopolymer and graphene oxide, as well as a systematic study of the physicochemical characteristics of the resulting nanocomposite films by electrochemical impedance spectroscopy. The nanocomposite films were constructed by cyclic electropolymerization, which allowed for the assembly of thin films with alternating azopolymers and reduced graphene oxide (rGO) layers in one step. Morphological characterizations were performed by atomic force microscopy and scanning electron microscopy and verified that the electrodeposition of the poly(azo-BBY) polymeric film occurred during the anodic sweep, and the deposition of graphene oxide sheets took place during the cathodic sweep. By analyzing the electrochemical impedance spectra using equivalent circuit models, variations in the resistance and capacitance values of the system were monitored as a function of the amount of electrodeposited material on the fluorine doped tin oxide electrode. In addition, the interfacial phenomena that occurred during the electroreduction of the rGO sheets were monitored with the same method.
RESUMEN
The present paper describes the development of a novel photochemiresistor sensor for the determination of chemical oxygen demand (COD). A chemiresistive device was produced by a thin film of the monoclinic phase of bismuth vanadate deposited on an FTO glass surface. The resistive properties of the photosensor were carried out by electrochemical impedance spectroscopy (EIS). The electrical resistance of the platform was dependent on the presence of organic material in aqueous solution and the incidence of light. The decrease in resistance can be explained by considering that by increasing the amount of organic material, the amount of charge transferred to BiVO4 increases, as does the amount of the photogenerated conduction band on the film. This behavior is not observed when carrying out the same measurements in the absence of light. Under the optimal experimental conditions, the linear response of the chemiresistor sensor is between 0.20 and 19.9 mg L-1 COD at a fixed AC frequency of 0.1 Hz. There is a good correlation between the charge transfer resistance and COD concentration in the electrolyte solution. Quantification of COD in waste and lake waters was successfully performed using the novel photochemiresistor sensor. The results achieved in the analysis with the sensor are in accordance with the conventional method.
RESUMEN
The polysaccharide carboxymethyl-botryosphaeran (CMB) was used to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in water. This feature was applied in modifying a glassy carbon electrode (GCE) to construct a sensitive voltammetric sensor for the determination of desloratadine (DESL), a tricyclic antihistamine. The morphology and spectroscopic behavior of the sensor were evaluated. The modified sensor was characterized as homogeneous, and presented a higher electroactive area and a lower charge transfer resistance compared to the unmodified GCE. Using linear sweep voltammetry at 25 mV s-1, the developed sensor presented a sensitivity of 1.018 µA L µmol-1 in the linear working range of 1.99-32.9 µmol L-1, with a detection limit of 0.88 µmol L-1 of DESL in 0.10 mol L-1 potassium hydrogen-phosphate solution (pH 8.0). In addition, the sensor showed excellent repeatability with a relative standard deviation of only 1.02% for a sequence of 10 measurements. The sensor was successfully applied in the analysis of pharmaceutical preparations containing DESL, with equivalent results compared to a validated spectrophotometric method at the 95% confidence level. The sensor was also employed in the analysis of a spiked sample of DESL in rat serum.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Glucanos/química , Loratadina/análogos & derivados , Nanotubos de Carbono/química , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Electrodos , Loratadina/análisis , Tamaño de la Partícula , Propiedades de Superficie , Agua/químicaRESUMEN
In the present study, a chemiresistor sensor based on a poly(Bismarck Brown Y)-reduced graphene oxide nanocomposite was developed to analyze the respiratory capacity of the constituent complexes of the electron transport chain. The sensorial platform was characterized using electrochemical impedance spectroscopy, and oxygen detection was accomplished by measuring the resistive properties of the sensor at fixed AC frequency. The impedance decreased significantly in response to small variations of the O2 concentrations tested up to saturation of the electrolyte solution with molecular oxygen. The resistive response of the sensor at 0.1 Hz was linear over the oxygen concentration range from 1.17 × 10-5 mol L-1 to 1.02 × 10-3 mol L-1, with a detection limit of 3.60 × 10-7 mol L-1. Using the new O2 sensing platform, we monitored gradients in static cultures of adherent cells exposed to graded oxygen both at rest and upon metabolic stimulation. Under high dissolved oxygen conditions, the respiration of resting cells dictated that local O2 was moderately reduced, while cell metabolic stimulation triggered a major redistribution of O2. The usefulness of the developed sensor was demonstrated by continuous monitoring of mitochondrial oxygen consumption in various biologic applications.
Asunto(s)
Compuestos Azo/química , Grafito/química , Mitocondrias/metabolismo , Consumo de Oxígeno , Oxígeno/análisis , Polímeros/química , Animales , Espectroscopía Dieléctrica/métodos , Límite de Detección , Masculino , Nanocompuestos/química , Oxígeno/metabolismo , Ratas WistarRESUMEN
A resistance detection device for dissolved molecular oxygen in aqueous solutions is prepared using a chemiresistor material as sensor platform. The chemiresistive circuit element is fashioned from a thin film of a cobalt-salen metallopolymer electrodeposited on a platinum electrode. Electrochemical impedance spectroscopy shows that the resistive and capacitive properties of the sensor platform depend on the presence of dissolved oxygen. The electrical circuit models are R(Q/R)(Q/R) and R(Q/R)(Q/RW) in the absence and presence of oxygen, respectively. The chemiresistor sensor exhibits good sensitivity (0.483â¯kΩâ¯Lâ¯mg-1), excellent reversibility and excellent linearity over a range of dissolved oxygen concentrations typically found under environmental conditions (2.72-40.9â¯mgâ¯L-1). The sensor fabricated in this work can potentially serve as an alternative sensor for the detection of dissolved oxygen in environmental samples.