RESUMEN
BACKGROUND: Fetal alcohol spectrum disorders (FASD) commonly include deficits in learning, memory, and executive control that can have a severe negative impact on quality of life across the life span. It is still unclear how prenatal alcohol exposure (PAE) affects executive control processes, such as control over reward seeking, that lead to inappropriate behavior later in life. Learning and reinstatement of a previously learned response after extinction is a simple, well-validated measure of both acquisition of a rewarded instrumental response and sensitivity to reward and reward-associated cues. We investigated the effects of PAE on learning, extinction, and reinstatement of a simple instrumental response for food reward. Next, we assessed the effectiveness of an early intervention, communal nest (CN) housing, on increased reinstatement of an extinguished response seen after PAE. METHODS: To assess the effects of PAE on control over reward seeking, we tested male and female PAE and saccharine (SAC) controls raised in a standard nest (SN) on the acquisition, extinction, and food reward-induced reinstatement of an instrumental response utilizing a touch screen-based paradigm. Next, in order to examine the effects of an early-life intervention on these behaviors, we tested PAE and SAC mice raised in a CN early-life environment on these behaviors. RESULTS: PAE mice readily acquired and extinguished a simple touch response to a white square stimulus. However, PAE mice showed significantly increased and persistent reinstatement compared to controls. Increased maternal care via rearing in CN slowed acquisition and sped extinction learning and rescued the significantly increased reinstatement responding in PAE mice. CONCLUSIONS: Together these results demonstrate that even moderate PAE is sufficient to alter control over reward seeking as measured by reinstatement. Importantly, an early-life intervention previously shown to improve cognitive outcomes in PAE mice was sufficient to ameliorate this effect.
Asunto(s)
Depresores del Sistema Nervioso Central , Etanol , Conducta Materna , Efectos Tardíos de la Exposición Prenatal , Recompensa , Animales , Extinción Psicológica , Femenino , Masculino , Ratones Endogámicos C57BL , EmbarazoRESUMEN
BACKGROUND: Prenatal alcohol exposure (PAE) continues to be a worldwide problem. Affected offspring display impaired neurodevelopment, including difficulties with executive control. Although PAE has also been associated with decreased blood flow to fetuses, the relationship between PAE and altered blood flow is not well understood. METHODS: We used preclinical models of PAE, transient systemic hypoxia ischemia (TSHI), and PAE + TSHI combined to assess the effects on neurodevelopmental outcomes using translationally relevant touchscreen operant platform testing. Twenty-eight Long-Evans (Blue Spruce, Strain HsdBlu:LE) dams were randomly assigned to one of four experimental groups: Saccharin Control (Sham), 5% Ethanol (PAE), TSHI, or 5% Ethanol and TSHI (PAE + TSHI). Dams consumed either saccharin or 5% ethanol during gestation. TSHI was induced on Embryonic Day 19 (E19) during an open laparotomy where the uterine arteries were transiently occluded for 1 h. Pups were born normally and, after weaning, were separated by sex. A total of 80 offspring, 40 males and 40 females, were tested on the 5-Choice Continuous Performance paradigm (5C-CPT). RESULTS: Female offspring were significantly impacted by TSHI, but not PAE, with an increase in false alarms and a decrease in hit rates, omissions, accuracy, and correct choice latencies. In contrast, male offspring were mildly affected by PAE, but not TSHI, showing decreases in premature responses and increases in accuracy. No significant interactions between PAE and TSHI were detected on any measure. CONCLUSION: Transient systemic hypoxia ischemia impaired performance on the 5C-CPT in females, leading to a bias toward stimulus responsivity regardless of stimulus type. In contrast, TSHI did not affect male offspring, and only slight effects of PAE were seen. Together, these data suggest that TSHI in females may cause alterations in cortical structures that override alterations caused by moderate PAE.
RESUMEN
Although it is well established that alcohol consumption during pregnancy can lead to lifelong difficulties in offspring, Fetal Alcohol Spectrum Disorders (FASD) remain a common neurodevelopmental syndrome. Translational behavioral tools that target similar brain circuits across species can facilitate understanding of these cognitive consequences. Touchscreen behavioral tasks for rodents enable easy integration of dura recordings of electroencephalographic (EEG) activity in awake behaving animals, with clear translational generalizability. Recently, we showed that Prenatal Alcohol Exposure (PAE) impairs cognitive control on the touchscreen 5-Choice Continuous Performance Task (5C-CPT) which requires animals to touch on target trials (hit) and withhold responding on non-target trials (correct rejection). Here, we extended these findings to determine whether dura EEG recordings would detect task-relevant differences in medial prefrontal cortex (mPFC) and posterior parietal cortex (PPC) corresponding with behavioral alterations in PAE animals. Replicating previous findings, PAE mice made more false alarm responses versus controls and had a significantly lower sensitivity index. All mice, regardless of sex or treatment, demonstrated increased frontal theta-band power during correct trials that followed an error (similar to post-error monitoring commonly seen in human participants). All mice showed a significant decrease in parietal beta-band power when performing a correct rejection versus a hit. PAE mice of both sexes showed a significantly larger decrease in parietal beta-band power when successfully rejecting non-target stimuli. These findings suggest that moderate exposure to alcohol during development can have long lasting effects on cognitive control, and task-relevant neural signals may provide a biomarker of impaired function across species.
Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Masculino , Humanos , Femenino , Ratones , Animales , Embarazo , Roedores , Efectos Tardíos de la Exposición Prenatal/psicología , Etanol/toxicidad , Cognición , Electroencefalografía , Pruebas NeuropsicológicasRESUMEN
The bench-to-bedside development of pro-cognitive therapeutics for psychiatric disorders has been mired by translational failures. This is, in part, due to the absence of pharmacologically sensitive cognitive biomarkers common to humans and rodents. Here, we describe a cross-species translational marker of reward processing that is sensitive to the aminergic agonist, d-amphetamine. Motivated by human electroencephalographic (EEG) findings, we recently reported that frontal midline delta-band power is an electrophysiological biomarker of reward surprise in humans and in mice. In the current series of experiments, we determined the impact of parametric doses of d-amphetamine on this reward-related EEG response from humans (n = 23) and mice (n = 28) performing a probabilistic learning task. In humans, d-amphetamine (placebo, 10 mg, 20 mg) boosted the Reward Positivity event-related potential (ERP) component as well as the spectral delta-band representations of this signal. In mice, d-amphetamine (placebo, 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg) boosted both reward and punishment ERP features, yet there was no modulation of spectral activities. In sum, the present results confirm the role of dopamine in the generation of the Reward Positivity in humans, and pave the way toward a pharmacologically valid biomarker of reward sensitivity across species.
Asunto(s)
Anfetamina , Refuerzo en Psicología , Anfetamina/farmacología , Animales , Biomarcadores , Electroencefalografía , Humanos , Ratones , RecompensaRESUMEN
The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.
Asunto(s)
Consolidación de la Memoria , Proteínas de Unión al ARN , Transmisión Sináptica , Transactivadores , Animales , Ratones , Ratones Noqueados , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
A common feature associated with fetal alcohol spectrum disorders is the inability to concentrate on a specific task while ignoring distractions. Human continuous performance tasks (CPT), measure vigilance and cognitive control simultaneously while these processes are traditionally measured separately in rodents. We recently established a touchscreen 5-choice CPT (5C-CPT) that measures vigilance and cognitive control simultaneously by incorporating both target and nontargets and showed it was sensitive to amphetamine-induced improvement in humans and mice. Here, we examined the effects of moderate prenatal alcohol exposure (PAE) in male and female mice on performance of the 5-choice serial reaction time task (5-CSRTT), which contained only target trials, and the 5C-CPT which incorporated both target and nontarget trials. In addition, we assessed gait and fine motor coordination in behavioral naïve PAE and control animals. We found that on the 5-CSRTT mice were able to respond to target presentations with similar hit rates regardless of sex or treatment. However, on the 5C-CPT PAE mice made significantly more false alarm responses vs controls. Compared with control animals, PAE mice had a significantly lower sensitivity index, a measure of ability to discriminate appropriate responses to stimuli types. During 5C-CPT, female mice, regardless of treatment, also had increased mean latency to respond when correct and omitted more target trials. Gait assessment showed no significant differences in PAE and SAC mice on any measure. These findings suggest that moderate exposure to alcohol during development can have long lasting effects on cognitive control unaffected by gross motor alterations.
Asunto(s)
Atención , Cognición , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Animales , Conducta de Elección , Femenino , Marcha , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza MotoraRESUMEN
There has been a fundamental failure to translate preclinically supported research into clinically efficacious treatments for psychiatric disorders. One of the greatest impediments toward improving this species gap has been the difficulty of identifying translatable neurophysiological signals that are related to specific behavioral constructs. Here, we present evidence from three paradigms that were completed by humans and mice using analogous procedures, with each task eliciting candidate a priori defined electrophysiological signals underlying effortful motivation, reinforcement learning, and cognitive control. The effortful motivation was assessed using a progressive ratio breakpoint task, yielding a similar decrease in alpha-band activity over time in both species. Reinforcement learning was assessed via feedback in a probabilistic learning task with delta power significantly modulated by reward surprise in both species. Additionally, cognitive control was assessed in the five-choice continuous performance task, yielding response-locked theta power seen across species, and modulated by difficulty in humans. Together, these successes, and also the teachings from these failures, provide a roadmap towards the use of electrophysiology as a method for translating findings from the preclinical assays to the clinical settings.
Asunto(s)
Refuerzo en Psicología , Recompensa , Animales , Biomarcadores , Ratones , Motivación , Pruebas NeuropsicológicasRESUMEN
Tocopherylquinone (TQ), the oxidation product of alpha-tocopherol (AT), is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells), whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells) was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells.