Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(42): 17470-17485, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37820300

RESUMEN

Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.

2.
Biophys J ; 120(17): 3664-3675, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310942

RESUMEN

Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs' allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.


Asunto(s)
Calcio , Simulación de Dinámica Molecular , Calcio/metabolismo , Conformación Proteica , Dispersión del Ángulo Pequeño , Intercambiador de Sodio-Calcio/metabolismo , Difracción de Rayos X
3.
Chemistry ; 27(4): 1451-1464, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32959929

RESUMEN

Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.

4.
Biophys J ; 119(2): 337-348, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32574558

RESUMEN

The Na+/Ca2+ exchanger of Drosophila melanogaster, CALX, is the main Ca2+-extrusion mechanism in olfactory sensory neurons and photoreceptor cells. Na+/Ca2+ exchangers have two Ca2+ sensor domains, CBD1 and CBD2. In contrast to the mammalian homologs, CALX is inhibited by Ca2+ binding to CALX-CBD1, whereas CALX-CBD2 does not bind Ca2+ at physiological concentrations. CALX-CBD1 consists of a ß-sandwich and displays four Ca2+-binding sites at the tip of the domain. In this study, we used NMR spectroscopy and isothermal titration calorimetry (ITC) to investigate the cooperativity of Ca2+ binding to CALX-CBD1. We observed that this domain binds Ca2+ in the slow exchange regime at the NMR chemical shift timescale. Ca2+ binding restricts the dynamics in the Ca2+-binding region. Experiments of 15N chemical exchange saturation transfer and 15N R2 dispersion allowed the determination of Ca2+ dissociation rates (∼30 s-1). NMR titration curves of residues in the Ca2+-binding region were sigmoidal because of the contribution of chemical exchange to transverse magnetization relaxation rates, R2. Hence, a novel, to our knowledge, approach to analyze NMR titration curves was proposed. Ca2+-binding cooperativity was examined assuming two different stoichiometric binding models and using a Bayesian approach for data analysis. Fittings of NMR and ITC binding curves to the Hill model yielded nHill ∼2.9, near maximal cooperativity (nHill = 4). By assuming a stepwise model to interpret the ITC data, we found that the probability of binding from 2 up to 4 Ca2+ is approximately three orders of magnitude higher than that of binding a single Ca2+. Hence, four Ca2+ ions bind almost simultaneously to CALX-CBD1. Cooperative Ca2+ binding is key to enable this exchanger to efficiently respond to changes in the intracellular Ca2+ concentration in sensory neuronal cells.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Antiportadores/metabolismo , Teorema de Bayes , Sitios de Unión , Calcio/metabolismo , Calorimetría , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Espectroscopía de Resonancia Magnética , Unión Proteica , Intercambiador de Sodio-Calcio/metabolismo
5.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817098

RESUMEN

Multidrug resistance (MDR) is a serious threat to public health, making the development of new antimicrobials an urgent necessity. Pyocins are protein antibiotics produced by Pseudomonas aeruginosa strains to kill closely related cells during intraspecific competition. Here, we report an in-depth biochemical, microbicidal, and structural characterization of a new S-type pyocin, named S8. Initially, we described the domain organization and secondary structure of S8. Subsequently, we observed that a recombinant S8 composed of the killing subunit in complex with the immunity (ImS8) protein killed the strain PAO1. Furthermore, mutation of a highly conserved glutamic acid to alanine (Glu100Ala) completely inhibited this antimicrobial activity. The integrity of the H-N-H motif is probably essential in the killing activity of S8, as Glu100 is a highly conserved residue of this motif. Next, we observed that S8 is a metal-dependent endonuclease, as EDTA treatment abolished its ability to cleave supercoiled pUC18 plasmid. Supplementation of apo S8 with Ni2+ strongly induced this DNase activity, whereas Mn2+ and Mg2+ exhibited moderate effects and Zn2+ was inhibitory. Additionally, S8 bound Zn2+ with a higher affinity than Ni2+ and the Glu100Ala mutation decreased the affinity of S8 for these metals, as shown by isothermal titration calorimetry (ITC). Finally, we describe the crystal structure of the Glu100Ala S8 DNase-ImS8 complex at 1.38 Å, which gave us new insights into the endonuclease activity of S8. Our results reinforce the possibility of using pyocin S8 as an alternative therapy for infections caused by MDR strains, while leaving commensal human microbiota intact.IMPORTANCE Pyocins are proteins produced by Pseudomonas aeruginosa strains that participate in intraspecific competition and host-pathogen interactions. They were first described in the 1950s and since then have gained attention as possible new antibiotics. However, there is still only scarce information about the molecular mechanisms by which these molecules induce cell death. Here, we show that the metal-dependent endonuclease activity of pyocin S8 is involved with its antimicrobial action against strain PAO1. We also describe that this killing activity is dependent on a conserved Glu residue within the H-N-H motif. The potency and selectivity of pyocin S8 toward a narrow spectrum of P. aeruginosa strains make this protein an attractive antimicrobial alternative for combatting MDR strains, while leaving commensal human microbiota intact.


Asunto(s)
Antibacterianos/química , Desoxirribonucleasa I/química , Pseudomonas aeruginosa/metabolismo , Piocinas/química , Secuencias de Aminoácidos , Ácido Glutámico/química , Relación Estructura-Actividad
6.
Nat Immunol ; 9(7): 753-60, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536718

RESUMEN

To provide insight into the structural and functional properties of human complement component 5 (C5), we determined its crystal structure at a resolution of 3.1 A. The core of C5 adopted a structure resembling that of C3, with the domain arrangement at the position corresponding to the C3 thioester being very well conserved. However, in contrast to C3, the convertase cleavage site in C5 was ordered and the C345C domain flexibly attached to the core of C5. Binding of the tick C5 inhibitor OmCI to C5 resulted in stabilization of the global conformation of C5 but did not block the convertase cleavage site. The structure of C5 may render possible a structure-based approach for the design of new selective complement inhibitors.


Asunto(s)
Complemento C5/química , Complemento C5/metabolismo , Proteínas de Insectos/metabolismo , Estructura Cuaternaria de Proteína , Animales , Proteínas de Artrópodos , Sitios de Unión , Proteínas Portadoras , Complemento C3 , Cristalografía por Rayos X , Humanos , Proteínas de Insectos/química , Resonancia por Plasmón de Superficie
7.
Langmuir ; 36(48): 14793-14801, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33210929

RESUMEN

The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted ß-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Péptidos , Adsorción , Amiloide , Membrana Dobles de Lípidos , Péptidos/toxicidad , Termodinámica
8.
Arch Biochem Biophys ; 666: 63-72, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30940569

RESUMEN

In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.


Asunto(s)
Cisteína/genética , Longevidad , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Serina/genética , Glutatión/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Protein Expr Purif ; 152: 40-45, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30036587

RESUMEN

An expansion of the polyglutamine (polyQ) tract within the deubiquitinase ataxin-3 protein is believed to play a role in a neurodegenerative disorder. Ataxin-3 contains a Josephin catalytic domain and a polyQ tract that renders it intrinsically prone to aggregate, and thus full-length protein is difficult to characterize structurally by high-resolution methods. We established a robust protocol for expression and purification of wild-type and expanded ataxin-3, presenting 19Q and 74Q, respectively. Both proteins are monodisperse as assessed by analytical size exclusion chromatography. Initial biophysical characterization was performed, with apparent transition melting temperature of expanded ataxin-3 lower than the wild-type counterpart. We further characterize the molecular envelope of wild-type and expanded polyQ tract in ataxin-3 using small angle X-ray scattering (SAXS). Characterization of protein-protein interactions between ataxin-3 and newly identified binding partners will benefit from our protocol.


Asunto(s)
Ataxina-3/química , Enfermedad de Machado-Joseph/genética , Péptidos/química , Proteínas Recombinantes/química , Proteínas Represoras/química , Ataxina-3/biosíntesis , Ataxina-3/genética , Ataxina-3/aislamiento & purificación , Cromatografía en Gel/métodos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Modelos Moleculares , Péptidos/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
Eur Biophys J ; 47(5): 561-571, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29376196

RESUMEN

In this work, we developed a coarse-grained model of sumatriptan suitable for extensive molecular dynamics simulations. First, we confirmed the interfacial distribution of this drug in bilayers through cryogenic transmission electron microscopy and small-angle X-ray scattering techniques, as was predicted by our previous atomistic simulations. Based on these simulations, we developed a coarse-grained model for sumatriptan able to reproduce its overall molecular behavior, captured by atomistic simulations and experiments. We then tested the sumatriptan model in a micellar environment along with experimental characterization of sumatriptan-loaded micelles. The simulation results showed good agreement with photon correlation spectroscopy and electrophoretic mobility experiments performed in this work. The particle size of the obtained micelles was comparable with the simulated ones; meanwhile, zeta-potential results suggest adsorption of the drug on the micellar surface. This model is a step forward in the search for a suitable drug-delivery system for sumatriptan.


Asunto(s)
Simulación de Dinámica Molecular , Sumatriptán/química , Membrana Dobles de Lípidos/química , Liposomas/química , Micelas , Microscopía Electrónica , Conformación Molecular , Poloxámero/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
Biochim Biophys Acta ; 1864(7): 847-59, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27068540

RESUMEN

α-Lactalbumin (aLA) has been shown to form complexes with oleic acid (OA), which may target cancer cells. We recently showed that aLA and several other proteins all form protein-OA complexes called liprotides with a generic structure consisting of a micellar OA core surrounded by a shell of partially denatured protein. Here we report that a heat treatment and an alkaline treatment method both allow us to prepare liprotide complexes composed of aLA and a range of unsaturated fatty acids (FA), provided the FAs contain cis (but not trans) double bonds. All liprotides containing cis-FA form both small and large species, which all consist of partially denatured aLA, though the overall shape of the species differs. Small liprotides have a simple core-shell structure while the larger liprotides are multi-layered, i.e. they have an additional layer of both FA and aLA surrounding the outside of the core-shell structure. All liprotides can transfer their entire FA content to vesicles, releasing aLA as monomers and softening the lipid membrane. The more similar to OA, the more efficiently the different FAs induce hemolysis. We conclude that aLA can take up and transfer a wide variety of FA to membranes, provided they contain a cis-bond. This highlights liprotides as a general class of complexes where both protein and cis-FA component can be varied without departing from a generic (though sometimes multi-layered) core-shell structure.


Asunto(s)
Ácidos Grasos/química , Lactalbúmina/química , Lípidos de la Membrana/química , Ácido Oléico/química , Disulfuros/química , Desnaturalización Proteica , Pliegue de Proteína
12.
Soft Matter ; 13(48): 9220-9228, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29199311

RESUMEN

Orientation of fibrous collagen structures plays an important role not only in the native function of various biological tissues but also in the development of next-generation tissue engineering scaffolds. However, the controlled assembly of collagen in vitro into an anisotropic structure, avoiding complex technical procedures and specialized apparatus, remains a challenge. Here, an oriented collagen matrix was fabricated at the macroscale by simple centrifugation, and the aligned topographical features of the resulting collagen matrix were revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and small angle X-ray scattering. The aligned matrix exhibited a higher ultimate tensile strength and strain than a random matrix. Centrifugation had an impact on the diameter and density of the collagen fibrils, while it had no effect on their native D-periodicity and thermal stability. Additionally, structural anisotropy of the collagen matrix facilitated the proliferation and migration of NIH/3T3 fibroblasts, compared with the random one. This simple and cost-effective method could lead to mass production of aligned collagen matrices and future possibilities for different applications in tissue engineering.


Asunto(s)
Bagres , Colágeno/química , Proteínas de Peces/química , Animales , Proliferación Celular/efectos de los fármacos , Centrifugación , Colágeno/farmacología , Proteínas de Peces/farmacología
13.
Langmuir ; 32(7): 1799-807, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26814663

RESUMEN

Microfluidics offers unique characteristics to control the mixing of liquids under laminar flow. Its use for the assembly of lipoplexes represents an attractive alternative for the translation of gene delivery studies into clinical trials on a sufficient throughput scale. Here, it was shown that the microfluidic assembly of pDNA/cationic liposome (CL) lipoplexes allows the formation of nanocarriers with enhanced transfection efficiencies compared with the conventional bulk-mixing (BM) process under high pDNA loading conditions. Lipoplexes generated by microfluidic devices exhibit smaller and more homogeneous structures at a molar charge ratio (R±) of 1.5, representing the ratio of lipid to pDNA content. Using an optimized model to fit small-angle X-ray scattering (SAXS) curves, it was observed that large amounts of pDNA induces the formation of aggregates with a higher number of stacked bilayers (N ∼ 5) when the BM process was used, whereas microfluidic lipoplexes presented smaller structures with a lower number of stacked bilayers (N ∼ 2.5). In vitro studies further confirmed that microfluidic lipoplexes achieved higher in vitro transfection efficiencies in prostate cancer cells at R ± 1.5, employing a reduced amount of cationic lipid. The correlation of mesoscopic characteristics with in vitro performance provides insights for the elucidation of the colloidal arrangement and biological behavior of pDNA/CL lipoplexes obtained by different processes, highlighting the feasibility of applying microfluidics to gene delivery.


Asunto(s)
ADN/química , Portadores de Fármacos/química , Dispositivos Laboratorio en un Chip , Lípidos/química , Liposomas/química , Nanoestructuras/química , Plásmidos/genética , Transfección , ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico
14.
J Chem Inf Model ; 56(5): 941-9, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27050675

RESUMEN

A semiautomatic procedure to build complex atomistic covalently linked DNA nanocages has been implemented in a user-friendly, free, and fast program. As a test set, seven different truncated DNA polyhedra, composed by B-DNA double helices connected through short single-stranded linkers, have been generated. The atomistic structures, including a tetrahedron, a cube, an octahedron, a dodecahedron, a triangular prism, a pentagonal prism, and a hexagonal prism, have been probed through classical molecular dynamics and analyzed to evaluate their structural and dynamical properties and to highlight possible building faults. The analysis of the simulated trajectories also allows us to investigate the role of the different geometries in defining nanocages stability and flexibility. The data indicate that the cages are stable and that their structural and dynamical parameters measured along the trajectories are slightly affected by the different geometries. These results demonstrate that the constraints imposed by the covalent links induce an almost identical conformational variability independently of the three-dimensional geometry and that the program presented here is a reliable and valid tool to engineer DNA nanostructures.


Asunto(s)
ADN Forma B/química , Simulación de Dinámica Molecular , Automatización , Conformación de Ácido Nucleico
15.
Nanomedicine ; 12(8): 2241-2250, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27339784

RESUMEN

Due to its physicochemical properties, nanostructured mesoporous SBA-15 silica shows great potential as a vaccine adjuvant. This study evaluated the capacity of SBA-15 to encapsulate/adsorb the recombinant purified HBsAg from the Hepatitis B virus and the immunoresponsiveness of mice orally immunized with HBsAg inside SBA-15. A simulation of small angle X-ray scattering experimental results, together with the nitrogen adsorption isotherms data, allowed to determine the appropriate mass ratio of HBsAg:SBA-15, indicating antigen encapsulation into SBA-15 macroporosity. This was also evaluated by bicinchoninic acid assay and gel electrophoresis. The recruitment of inflammatory cells, an increase in production of specific antibodies, and the non-influence of silica on TH1 or TH2 polarization were observed after oral immunization. Besides, SBA-15 enhanced the phagocytosis of ovalbumin by dendritic cells, an important key to prove how this adjuvant works. Thus, it seems clear that the nanostructured SBA-15 is an effective and safe adjuvant for oral immunizations.


Asunto(s)
Vacunas contra Hepatitis B/administración & dosificación , Inmunización/métodos , Dióxido de Silicio , Animales , Antígenos de Superficie de la Hepatitis B , Ratones , Vacunación
16.
Langmuir ; 31(15): 4513-23, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25823528

RESUMEN

A model octapeptide peptide consisting of an alternating sequence of arginine (Arg) and phenylalanine (Phe) residues, namely, [Arg-Phe]4, was prepared, and its self-assembly in solution studied. The simple alternating [Arg-Phe]4 peptide sequence allows for unique insights into the aggregation process and the structure of the self-assembled motifs. Fluorescence and UV-vis assays were used to determine critical aggregation concentrations, corresponding to the formation of oligomeric species and ß-sheet rich structures organized into both spheroidal aggregates and highly ordered fibrils. Electron and atomic force microscopy images show globular aggregates and long unbranched fibers with diameters ranging from ∼4 nm up to ∼40 nm. Infrared and circular dichroism spectroscopy show the formation of ß-sheet structures. X-ray diffraction on oriented stalks show that the peptide fibers have an internal lamellar structure, with an orthorhombic unit cell with parameters a ∼ 27.6 Å, b ∼ 9.7 Å, and c ∼ 9.6 Å. In situ small-angle X-ray scattering (SAXS) shows the presence of low molecular weight oligomers in equilibrium with mature fibers which are likely made up from 5 or 6 intertwined protofilaments. Finally, weak gel solutions are probed under gentle shear, suggesting the ability of these arginine-rich fibers to form networks.


Asunto(s)
Arginina/química , Oligopéptidos/química , Fenilalanina/química , Geles , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Agregado de Proteínas , Estructura Secundaria de Proteína , Soluciones
17.
Soft Matter ; 11(39): 7769-77, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26308474

RESUMEN

Proteins may exhibit an unfolding or folding state in the presence of a surfactant. In the present study, the unfolding and folding pathway of hen egg white lysozyme (HEWL) induced by sodium dodecyl sulfate (SDS) is studied. The stoichiometry obtained from isothermal titration calorimetry (ITC) provides guidelines for other techniques. The fluorescence spectra and circular dichroism show that the fluorescence properties and secondary structure of proteins undergo a two-step change upon binding with SDS, in which the intensity decreases, the emission blue shifts and the helical conformation decreases at low ratios of SDS to HEWL, while all of them return to the native-like state upon the addition of SDS at higher ratios. At the end of the binding, HEWL presents a higher α-helical content but its tertiary structure is lost compared to its native state, which is namely a molten globule state. Small angle X-ray scattering (SAXS) analysis and the derived model reveal that the complexes possess a decorated core-shell structure, with the core composed of dodecyl chains and the shell consisting of SDS head groups with a protein in molten globule state. Five binding steps, including the individual details involved in the denaturation, were obtained to describe the unfolding and folding pathway of HEWL induced by SDS. The results of this study not only present details about the denaturation of protein induced by SDS and the structure of the complexes involved in each binding step, but also provide molecular insights into the mechanism of the higher helical conformation of proteins in the presence of surfactant micelles.


Asunto(s)
Muramidasa/química , Dodecil Sulfato de Sodio/química , Animales , Calorimetría , Pollos , Dicroismo Circular , Femenino , Micelas , Muramidasa/metabolismo , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Nature ; 459(7243): 73-6, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19424153

RESUMEN

The unique structural motifs and self-recognition properties of DNA can be exploited to generate self-assembling DNA nanostructures of specific shapes using a 'bottom-up' approach. Several assembly strategies have been developed for building complex three-dimensional (3D) DNA nanostructures. Recently, the DNA 'origami' method was used to build two-dimensional addressable DNA structures of arbitrary shape that can be used as platforms to arrange nanomaterials with high precision and specificity. A long-term goal of this field has been to construct fully addressable 3D DNA nanostructures. Here we extend the DNA origami method into three dimensions by creating an addressable DNA box 42 x 36 x 36 nm(3) in size that can be opened in the presence of externally supplied DNA 'keys'. We thoroughly characterize the structure of this DNA box using cryogenic transmission electron microscopy, small-angle X-ray scattering and atomic force microscopy, and use fluorescence resonance energy transfer to optically monitor the opening of the lid. Controlled access to the interior compartment of this DNA nanocontainer could yield several interesting applications, for example as a logic sensor for multiple-sequence signals or for the controlled release of nanocargos.


Asunto(s)
ADN/química , Nanoestructuras/química , Conformación de Ácido Nucleico , Microscopía por Crioelectrón , Imagenología Tridimensional , Microscopía de Fuerza Atómica
19.
Biophys J ; 106(12): 2595-605, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24940777

RESUMEN

This work presents a controlled study of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) structural changes due to in vitro oxidation with copper ions. The changes were studied by small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS) techniques in the case of LDL and by SAXS, DLS, and Z-scan (ZS) techniques in the case of HDL. SAXS data were analyzed with a to our knowledge new deconvolution method. This method provides the electron density profile of the samples directly from the intensity scattering of the monomers. Results show that LDL particles oxidized for 18 h show significant structural changes when compared to nonoxidized particles. Changes were observed in the electrical density profile, in size polydispersity, and in the degree of flexibility of the APO-B protein on the particle. HDL optical results obtained with the ZS technique showed a decrease of the amplitude of the nonlinear optical signal as a function of oxidation time. In contrast to LDL results reported in the literature, the HDL ZS signal does not lead to a complete loss of nonlinear optical signal after 18 h of copper oxidation. Also, the SAXS results did not indicate significant structural changes due to oxidation of HDL particles, and DLS results showed that a small number of oligomers formed in the sample oxidized for 18 h. All experimental results for the HDL samples indicate that this lipoprotein is more resistant to the oxidation process than are LDL particles.


Asunto(s)
Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Análisis de Fourier , Humanos , Luz , Oxidación-Reducción , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos X
20.
EMBO J ; 29(18): 3118-29, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20717102

RESUMEN

Four out of the 22 aminoacyl-tRNAs (aa-tRNAs) are systematically or alternatively synthesized by an indirect, two-step route requiring an initial mischarging of the tRNA followed by tRNA-dependent conversion of the non-cognate amino acid. During tRNA-dependent asparagine formation, tRNA(Asn) promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa-tRNA from non-discriminating aspartyl-tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 A resolution reveals a particle formed by two GatCABs, two dimeric ND-AspRSs and four tRNAs(Asn) molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl-tRNA(Asn) without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer-ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.


Asunto(s)
Asparagina/biosíntesis , ARN de Transferencia de Asparagina/metabolismo , Ribonucleoproteínas/química , Cristalización , Transferasas de Grupos Nitrogenados/metabolismo , Conformación Proteica , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Thermus thermophilus/metabolismo , Aminoacilación de ARN de Transferencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA