Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35064091

RESUMEN

Dissimilatory sulfur metabolism was recently shown to be much more widespread among bacteria and archaea than previously believed. One of the key pathways involved is the dsr pathway that is responsible for sulfite reduction in sulfate-, sulfur-, thiosulfate-, and sulfite-reducing organisms, sulfur disproportionators and organosulfonate degraders, or for the production of sulfite in many photo- and chemotrophic sulfur-oxidizing prokaryotes. The key enzyme is DsrAB, the dissimilatory sulfite reductase, but a range of other Dsr proteins is involved, with different gene sets being present in organisms with a reductive or oxidative metabolism. The dsrD gene codes for a small protein of unknown function and has been widely used as a functional marker for reductive or disproportionating sulfur metabolism, although in some cases this has been disputed. Here, we present in vivo and in vitro studies showing that DsrD is a physiological partner of DsrAB and acts as an activator of its sulfite reduction activity. DsrD is expressed in respiratory but not in fermentative conditions and a ΔdsrD deletion strain could be obtained, indicating that its function is not essential. This strain grew less efficiently during sulfate and sulfite reduction. Organisms with the earliest forms of dsrAB lack the dsrD gene, revealing that its activating role arose later in evolution relative to dsrAB.


Asunto(s)
Hidrogenosulfito Reductasa/metabolismo , Azufre/metabolismo , Regulación Alostérica , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Eliminación de Gen , Regulación de la Expresión Génica , Modelos Biológicos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Azufre/química
2.
Environ Microbiol ; 17(7): 2288-305, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25367508

RESUMEN

Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Etanol/metabolismo , FMN Reductasa/metabolismo , NADH Deshidrogenasa/metabolismo , Oxidorreductasas/metabolismo , Desulfovibrio vulgaris/genética , Electrones , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Ferredoxinas/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/genética , Oxidación-Reducción , Oxidorreductasas/genética , Ácido Pirúvico/metabolismo , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA