RESUMEN
Sharks are an important attraction for aquaria; however, larger species can rarely be kept indefinitely. To date, there has been little work tracking shark movements post-release to the wild. The authors used high-resolution biologgers to monitor a sub-adult tiger shark's pre- and post-release fine-scale movements following 2 years of captivity in an aquarium. They also compared its movement with that of a wild shark tagged nearby. Despite the differences in movement between the two sharks, with vertical oscillations notably absent and greater levels of turning seen from the released shark, the captive shark survived the release. These biologgers improve insight into post-release movements of captive sharks.
Asunto(s)
Ecosistema , Tiburones , AnimalesRESUMEN
Traditional forms of marine wildlife research are often restricted to coarse telemetry or surface-based observations, limiting information on fine-scale behaviours such as predator-prey events and interactions with habitat features. We use contemporary animal-attached cameras with motion sensing dataloggers, to reveal novel behaviours by white sharks, Carcharodon carcharias, within areas of kelp forest in South Africa. All white sharks tagged in this study spent time adjacent to kelp forests, with several moving throughout densely kelp-covered areas, navigating through channels and pushing directly through stipes and fronds. We found that activity and turning rates significantly increased within kelp forest. Over 28 h of video data revealed that white shark encounters with Cape fur seals, Arctocephalus pusillus pusillus, occurred exclusively within kelp forests, with seals displaying predator evasion behaviour during those encounters. Uniquely, we reveal the use of kelp forest habitat by white sharks, previously assumed inaccessible to these large predators.
Asunto(s)
Kelp , Tiburones , Animales , Ecosistema , Bosques , Conducta Predatoria , SudáfricaRESUMEN
Filter feeding shellfish can concentrate pathogenic bacteria, including Vibrio vulnificus and Vibrio parahaemolyticus, as much as 100-fold from the overlying water. These shellfish, especially clams and oysters, are often consumed raw, providing a route of entry for concentrated doses of pathogenic bacteria into the human body. The numbers of foodborne infections with these microbes are increasing, and a better understanding of the conditions that might trigger elevated concentrations of these bacteria in seafood is needed. In addition, if bacterial concentrations in water are correlated with those in shellfish, then sampling regimens could be simplified, as water samples can be more rapidly and easily obtained. After sampling of oysters and clams, either simultaneously or separately, for over 2 years, it was concluded that while Vibrio concentrations in oysters and water were related, this was not the case for levels in clams and water. When clams and oysters were collected simultaneously from the same site, the clams were found to have lower Vibrio levels than the oysters. Furthermore, the environmental parameters that were correlated with levels of Vibrio spp. in oysters and water were found to be quite different from those that were correlated with levels of Vibrio spp. in clams. IMPORTANCE: This study shows that clams are a potential source of infection in North Carolina, especially for V. parahaemolyticus These findings also highlight the need for clam-specific environmental research to develop accurate Vibrio abundance models and to broaden the ecological understanding of clam-Vibrio interactions. This is especially relevant as foodborne Vibrio infections from clams are being reported.
Asunto(s)
Bivalvos/microbiología , Microbiología de Alimentos , Ostreidae/microbiología , Agua de Mar/microbiología , Mariscos/microbiología , Animales , North Carolina , Vibrio/aislamiento & purificación , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio vulnificus/aislamiento & purificaciónRESUMEN
The metabolic capacity of the intestine and its importance as the initial barrier to systemic exposure can lead to underestimation of first-pass, and thus overestimation of oral bioavailability. However, the in vitro tools informing estimates of in vivo intestinal metabolism are limited by the complexity of the in vitro matrix preparation and uncertainty with the scaling factors for in vitro to in vivo extrapolation. A number of methods currently exist in the literature for the preparation of intestinal microsomes; however, the impact of key steps in the preparation procedure has not been critically assessed. In the current study, changes in enterocyte isolation, the impact of buffer constituents heparin and glycerol, as well as sonication as a direct method of homogenization were assessed systematically. Furthermore, fresh vs. frozen tissue samples and the impact of microsome freeze thawing was assessed. The rat intestinal microsomes were characterized for CYP content as well as metabolic activity using testosterone and 4-nitropheonol as probes for CYP and UGT activity, respectively. Comparisons in metabolic activity and scaled unbound intestinal intrinsic clearance (CLintu,gut ) were made to commercially available microsomes using 25 drugs with a diverse range of metabolic pathways and intestinal metabolic stabilities. An optimal, robust and reproducible microsomal preparation method for investigation of intestinal metabolism is proposed. The importance of characterization of the in vitro matrix and the potential impact of intestinal scaling factors on the in vitro-in vivo extrapolation of FG needs to be investigated further. © 2017 The Authors Biopharmaceutics & Drug Disposition Published by John Wiley & Sons Ltd.
Asunto(s)
Técnicas In Vitro/métodos , Mucosa Intestinal/metabolismo , Intestinos/citología , Microsomas/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Masculino , Microsomas/enzimología , RatasRESUMEN
Dormancy holds a vital role in the ecological dynamics of microorganisms. Specifically, entry into dormancy allows cells to withstand times of stress while maintaining the potential for reentry into an active existence. The viable but nonculturable (VBNC) state and antibiotic persistence are two well-recognized conditions of dormancy demonstrated to contribute to bacterial stress tolerance and, as a consequence, yield populations that are tolerant to high-dose antibiotics. Aside from this commonality, more evidence is being presented that indicates the relatedness of these two states. Here, we demonstrate that VBNC cells are present during persister isolation experiments, further indicating that these cells coexist and are induced by the same conditions. Interestingly, we reveal that VBNC cells can exist stochastically in unstressed growing cultures, a finding that is characteristic of persisters. Furthermore, human serum induces the formation of both VBNC cells and persisters, a finding not previously described for either dormancy state. Lastly, we describe the role of toxin-antitoxin systems (TAS) in the induction of the VBNC state and report that these TAS, which are classically implicated in persister cell formation, are also induced during incubation in human serum. This study provides evidence for the recently proposed "dormancy continuum hypothesis" and substantiates the physical and molecular relatedness of VBNC and persister cells in a standardized model organism. Notably, these results provide new evidence for the clinical significance of VBNC and persister cells.
Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/crecimiento & desarrollo , Viabilidad Microbiana , Suero/microbiología , Vibriosis/microbiología , Vibrio vulnificus/crecimiento & desarrollo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Infecciones por Escherichia coli/sangre , Humanos , Vibriosis/sangre , Vibrio vulnificus/efectos de los fármacos , Vibrio vulnificus/genéticaRESUMEN
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance.
Asunto(s)
Ostreidae/microbiología , Alimentos Marinos/microbiología , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio vulnificus/aislamiento & purificación , Microbiología del Agua , Animales , Acuicultura , Clima , Métodos Epidemiológicos , Inocuidad de los Alimentos/métodos , Modelos Estadísticos , North CarolinaRESUMEN
PURPOSE: Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine. METHODS: Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry. RESULTS: Seven and two CYPs were present in the liver and intestine, respectively. CYP3A12 was the most abundant CYP in both tissues. Seven UGT enzymes were quantified in the liver and seven in the intestine although UGT1A11 and UGT1A9 were present only in the intestine and UGT1A7 and UGT2B31 were found only in the liver. UGT1A11 and UGT1A2 were the most abundant UGTs in the intestine and UGT2B31 was the most abundant UGT in the liver. Summed abundance of UGT enzymes was similar to the sum of CYP enzymes in the liver whereas intestinal UGTs were up to four times more abundant than CYPs. The estimated coefficients of variation of abundance estimates in the livers of 14 donors were separated into biological and technical components which ranged from 14 to 49% and 20 to 39%, respectively. CONCLUSIONS: Abundances of canine CYP enzymes in liver and intestine have been confirmed in a larger number of dogs and UGT abundances have been quantified for the first time. The biological variability in hepatic CYPs and UGTs has also been estimated.
Asunto(s)
Colon/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Intestino Delgado/enzimología , Hígado/enzimología , Proteómica/métodos , Animales , Sistema Enzimático del Citocromo P-450/análisis , Perros , Femenino , Glucuronosiltransferasa/análisis , Humanos , Masculino , Espectrometría de Masas , Microsomas/enzimología , Modelos Biológicos , Especificidad de la EspecieRESUMEN
PURPOSE: To develop and evaluate a tool for the qualitative prediction of human oral bioavailability (Fhuman) from animal oral bioavailability (Fanimal) data employing ROC analysis and to identify the optimal thresholds for such predictions. METHODS: A dataset of 184 compounds with known Fhuman and Fanimal in at least one species (mouse, rat, dog and non-human primates (NHP)) was employed. A binary classification model for Fhuman was built by setting a threshold for high/low Fhuman at 50%. The thresholds for high/low Fanimal were varied from 0 to 100 to generate the ROC curves. Optimal thresholds were derived from 'cost analysis' and the outcomes with respect to false negative and false positive predictions were analyzed against the BDDCS class distributions. RESULTS: We successfully built ROC curves for the combined dataset and per individual species. Optimal Fanimal thresholds were found to be 67% (mouse), 22% (rat), 58% (dog), 35% (NHP) and 47% (combined dataset). No significant trends were observed when sub-categorizing the outcomes by the BDDCS. CONCLUSIONS: Fanimal can predict high/low Fhuman with adequate sensitivity and specificity. This methodology and associated thresholds can be employed as part of decisions related to planning necessary studies during development of new drug candidates and lead selection.
Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Animales , Disponibilidad Biológica , Perros , Humanos , Ratones , Modelos Biológicos , Curva ROC , RatasRESUMEN
Bacteria are exposed to stresses during their growth and multiplication in their ecological systems to which they respond in multiple ways as expert survivalists. One such response mechanism is to convert to a viable but not culturable (VBNC) state. As the name indicates, bacteria in the VBNC state have lost their ability to grow on routine growth medium. A large number of bacteria including many pathogenic species have been reported to be able to enter a VBNC state. VBNC differs from culturable cells in various physiological properties which may result in changes in chemical resistance, adhesion, cellular morphology, metabolism, gene expression, membrane and cell wall composition and/or virulence. The ability of VBNC bacteria to return to the culturable state or resuscitate, when the stressor is removed poses a considerable threat to public health. There have been few publications that overtly describe the ability of oral pathogenic species to enter the VBNC state. However, the presence of VBNCs among oral pathogens such as Porphyromonas gingivalis in human chronic infections may be an important virulence factor and have severe implications for therapy. In this review, we intend to i) define and summarize the significance of the VBNC state in general and ii) discuss the VBNC state of oral bacteria with regard to P. gingivalis. Future studies focused on this phenomenon of intraoral VBNC would provide novel molecular insights on the virulence and persistence of oral pathogens during chronic infections and identify potential novel therapies.
RESUMEN
AIMS: Monitoring the occurrence of the human pathogen Vibrio vulnificus in a mussel farm located in the lagoon of Varano (Italy). METHODS AND RESULTS: A total of 72 samples of mussel, water and sediment, collected from two locations of Varano lagoon in the Gargano peninsula, during a 7-month survey, were analysed. Isolation and PCR characterization of six V. vulnificus environmental genotype strains revealed that this pathogen was isolated when with T was above 22 °C and salinity ranged between 22.7 and 26.4. No significant correlation of the occurrence of V. vulnificus with water pH or salinity was observed. Moreover, 8% of mussel samples were found to be contaminated by V. vulnificus. All of that positive mussel samples originated from the same sampling station. CONCLUSION: It is suggested that warmer season are risky to eat raw or undercooked bivalve molluscs in the local area. SIGNIFICANCE AND IMPACT OF THE STUDY: To increase knowledge about environmental conditions that may affect the occurrence of waterborne pathogen Vibrio vulnificus in seafood.
Asunto(s)
Acuicultura , Bivalvos/microbiología , Sedimentos Geológicos/microbiología , Alimentos Marinos/microbiología , Agua de Mar/microbiología , Vibrio vulnificus/aislamiento & purificación , Animales , Medios de Cultivo , ADN Bacteriano/análisis , ADN Bacteriano/genética , Contaminación de Alimentos , Humanos , Italia , Reacción en Cadena de la Polimerasa/métodos , Estaciones del Año , Vibrio vulnificus/clasificación , Vibrio vulnificus/genéticaRESUMEN
Orofacial clefts and their management impose a substantial burden on patients, on their families, and on the health system. Under the current standard of care, affected patients are subjected to a lifelong journey of corrective surgeries and multidisciplinary management to replace bone and soft tissues, as well as restore esthetics and physiologic functions while restoring self-esteem and psychological health. Hence, a better understanding of the dynamic interplay of molecular signaling pathways at critical phases of palate development is necessary to pioneer novel prenatal interventions. Such pathways include transforming growth factor-ß (Tgfß), sonic hedgehog (Shh), wingless-integrated site (Wnt)/ß-catenin, bone morphogenetic protein (Bmp), and fibroblast growth factor (Fgf) and its associated receptors, among others. Here, we summarize commonly used surgical methods used to correct cleft defects postnatally. We also review the advances made in prenatal diagnostics of clefts through imaging and genomics and the various in utero surgical corrections that have been attempted thus far. An overview of how key mediators of signaling that drive palatogenesis are emphasized in the context of the framework and rationale for the development and testing of therapeutics in animal model systems and in humans is provided. The pros and cons of in utero therapies that can potentially restore molecular homeostasis needed for the proper growth and fusion of palatal shelves are presented. The theme advanced throughout this review is the need to develop preclinical molecular therapies that could ultimately be translated into human trials that can correct orofacial clefts at earlier stages of development.
Asunto(s)
Labio Leporino , Fisura del Paladar , Animales , Labio Leporino/genética , Labio Leporino/cirugía , Fisura del Paladar/genética , Fisura del Paladar/cirugía , Estética Dental , Femenino , Proteínas Hedgehog , Humanos , Hueso Paladar , Patología Molecular , EmbarazoRESUMEN
Calnexin and calreticulin interact specifically with newly synthesized glycoproteins in the endoplasmic reticulum (ER) and function as molecular chaperones. The carbohydrate-specific interactions between ER components and glycoproteins synthesized in isolated canine pancreatic microsomes were analyzed using a cross-linking approach. A carbohydrate-dependent interaction between newly synthesized glycoproteins, the thiol-dependent reductase ERp57, and either calnexin or calreticulin was identified. The interaction between ERp57 and the newly synthesized glycoproteins required trimming of the N-linked oligosaccharide side chain. Thus, it is likely that ERp57 functions as part of the glycoprotein-specific quality control machinery operating in the lumen of the ER.
Asunto(s)
Retículo Endoplásmico/enzimología , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/metabolismo , Isomerasas , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas de Unión al Calcio/metabolismo , Calnexina , Calreticulina , Perros , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Glucosidasas/antagonistas & inhibidores , Glicosilación , Indolizinas/farmacología , Microsomas/metabolismo , Peso Molecular , Páncreas/metabolismo , Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Ribonucleoproteínas/metabolismoRESUMEN
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Isomerasas/metabolismo , Lectinas/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Células CHO/metabolismo , Proteínas de Unión al Calcio/química , Calnexina , Calreticulina , Permeabilidad de la Membrana Celular , Cricetinae , Reactivos de Enlaces Cruzados/química , Perros , Electroforesis en Gel de Poliacrilamida , Maleimidas/química , Microsomas/química , Microsomas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Conejos , Ribonucleoproteínas/químicaRESUMEN
BACKGROUND: . The interfacial activation of lipases results primarily from conformational changes in the enzymes which expose the active site and provide a hydrophobic surface for interaction with the lipid substrate. Comparison of the crystallization conditions used and the structures observed for a variety of lipases suggests that the enzyme conformation is dependent on solution conditions. Pseudomonas cepacia lipase (PCL) was crystallized in conditions from which the open, active conformation of the enzyme was expected. Its three-dimensional structure was determined independently in three different laboratories and was compared with the previously reported closed conformations of the closely related lipases from Pseudomonas glumae (PGL) and Chromobacterium viscosum (CVL). These structures provide new insights into the function of this commercially important family of lipases. RESULTS: . The three independent structures of PCL superimpose with only small differences in the mainchain conformations. As expected, the observed conformation reveals a catalytic site exposed to the solvent. Superposition of PCL with the PGL and CVL structures indicates that the rearrangement from the closed to the open conformation involves three loops. The largest movement involves a 40 residue stretch, within which a helical segment moves to afford access to the catalytic site. A hydrophobic cleft that is presumed to be the lipid binding site is formed around the active site. CONCLUSIONS: . The interfacial activation of Pseudomonas lipases involves conformational rearrangements of surface loops and appears to conform to models of activation deduced from the structures of fungal and mammalian lipases. Factors controlling the conformational rearrangement are not understood, but a comparison of crystallization conditions and observed conformation suggests that the conformation of the protein is determined by the solution conditions, perhaps by the dielectric constant.
Asunto(s)
Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Lipasa/química , Conformación Proteica , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Lipasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Solventes , AguaRESUMEN
Although splines have been in popular use in CAD for more than half a century, spline research is still an active field, driven by the challenges we are facing today within isogeometric analysis and big data. Splines are likely to play a vital future role in enabling effective big data exploration techniques in 3D, 4D, and beyond.
RESUMEN
Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Asunto(s)
Absorción Intestinal/fisiología , Modelos Biológicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Animales Modificados Genéticamente , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Enterocitos/enzimología , Interacciones Alimento-Droga , Glucuronosiltransferasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mucosa Intestinal/metabolismo , Tasa de Depuración Metabólica , Modelos Animales , Farmacocinética , Sulfotransferasas/metabolismoRESUMEN
Quantifying the multiple processes which control and modulate the extent of oral bioavailability for drug candidates is critical to accurate projection of human pharmacokinetics (PK). Understanding how gut wall metabolism and hepatic elimination factor into first-pass clearance of drugs has improved enormously. Typically, the cytochrome P450s, uridine 5'-diphosphate-glucuronosyltransferases and sulfotransferases, are the main enzyme classes responsible for drug metabolism. Knowledge of the isoforms functionally expressed within organs of first-pass clearance, their anatomical topology (e.g. zonal distribution), protein homology and relative abundances and how these differ across species is important for building models of human metabolic extraction. The focus of this manuscript is to explore the parameters influencing bioavailability and to consider how well these are predicted in human from animal models or from in vitro to in vivo extrapolation. A unique retrospective analysis of three AstraZeneca molecules progressed to first in human PK studies is used to highlight the impact that species differences in gut wall metabolism can have on predicted human PK. Compared to the liver, pharmaceutical research has further to go in terms of adopting a common approach for characterisation and quantitative prediction of intestinal metabolism. A broad strategy is needed to integrate assessment of intestinal metabolism in the context of typical DMPK activities ongoing within drug discovery programmes up until candidate drug nomination.
Asunto(s)
Tracto Gastrointestinal/metabolismo , Absorción Intestinal/fisiología , Modelos Animales , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Animales , Disponibilidad Biológica , Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Predicción , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Absorción Intestinal/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificaciónRESUMEN
The endoplasmic reticulum (ER) is a major site of protein synthesis and its inside, or lumen, is a major site of protein folding. The lumen of the ER contains many folding factors and molecular chaperones, which facilitate protein folding by increasing both the rate and the efficiency of this process. Amongst the many ER folding factors, there are three components that specifically modulate the folding glycoproteins bearing N-linked carbohydrate side chains. These components are calnexin, calreticulin and ERp57, and this review focuses on the molecular basis for their capacity to influence glycoprotein folding.