Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(21): e2113936119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35580185

RESUMEN

The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens.


Asunto(s)
Antropología Cultural , Arqueología , Variación Genética , Densidad de Población , África , Agricultura , Diversidad Cultural , Humanos
2.
Euro Surveill ; 28(40)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796440

RESUMEN

BackgroundWest Nile virus (WNV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans and horses are incidental dead-end hosts. In 2020, the largest outbreak of West Nile virus infection in the Iberian Peninsula occurred, with 141 clusters in horses and 77 human cases.AimWe analysed which drivers influence spillover from the cycle to humans and equines and identified areas at risk for WNV transmission.MethodsBased on data on WNV cases in horses and humans in 2020 in Portugal and Spain, we developed logistic regression models using environmental and anthropic variables to highlight risk areas. Models were adapted to a high-resolution risk map.ResultsCases of WNV in horses could be used as indicators of viral activity and thus predict cases in humans. The risk map of horses was able to define high-risk areas for previous cases in humans and equines in Portugal and Spain, as well as predict human and horse cases in the transmission seasons of 2021 and 2022. We found that the spatial patterns of the favourable areas for outbreaks correspond to the main hydrographic basins of the Iberian Peninsula, jointly affecting Portugal and Spain.ConclusionA risk map highlighting the risk areas for potential future cases could be cost-effective as a means of promoting preventive measures to decrease incidence of WNV infection in Europe, based on a One Health surveillance approach.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Caballos , Animales , Europa (Continente) , Portugal/epidemiología , España/epidemiología , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
3.
Emerg Infect Dis ; 28(4): 777-785, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35318911

RESUMEN

West Nile virus (WNV) is an emergent arthropodborne virus that is transmitted from bird to bird by mosquitoes. Spillover events occur when infected mosquitoes bite mammals. We created a geopositioned database of WNV presence in Africa and considered reports of the virus in all animal components: reservoirs, vectors, and nonhuman dead-end hosts. We built various biogeographic models to determine which drivers explain the distribution of WNV throughout Africa. Wetlands of international importance for birds accounted for the detection of WNV in all animal components, whereas human-related drivers played a key role in the epizootic cases. We combined these models to obtain an integrative and large-scale perspective of the areas at risk for WNV spillover. Understanding which areas pose the highest risk would enable us to address the management of this spreading disease and to comprehend the translocation of WNV outside Africa through avian migration routes.


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , África/epidemiología , Animales , Mamíferos , Mosquitos Vectores , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/genética
4.
Mem Inst Oswaldo Cruz ; 114: e180569, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31166479

RESUMEN

BACKGROUND: Currently, there is an increasing global interest for the study of how infectious diseases could be linked to climate and weather variability. The Chagas disease was described in 1909 by Carlos Chagas, and is caused by the flagellate protozoan Trypanosoma cruzi. The Chagas disease is considered one of the biggest concerns in public health in Latin America. In Chile, the main vectors involved in the transmission of T. cruzi are arthropods of the Triatominae subfamily. Moreover, another main transmission way is through of vectors by fecal-urine way, however, oral way also has been described among others transmission form. OBJECTIVES: In order to get understand outbreaks of Chagas-disease, we search for possible relationships between the frequency of cases in the Chilean population and atmospheric oscillations. METHODS: We explored the two most important atmospheric oscillations in the Southern Hemisphere: southern oscillation index (SOI) and Antarctic oscillation (AAO), during the available years with official data. Because the number of migrant people born outside from Chile increasing significantively between 2014 and 2018, we used for the analysis two different periods from data available official data: (i) 2001 to 2014, (ii) 2001 to 2017. FINDINGS: For both periods we observed a significant and positive relation between AAO one year before. However, for the 2001 to 2014 period positive SOI one year before, which is related with La Niña phases, was the more important variable. MAIN CONCLUSIONS: The Chagas disease frequency per year in Chile was found to depend mainly on SOI in previous year, whose values can be determined one year in advance. Therefore, it is possible to partially forecast annual frequency patterns. This could have important applications in public health strategies and for allocating resources for the management of the disease.


Asunto(s)
Atmósfera , Enfermedad de Chagas/epidemiología , Cambio Climático , Brotes de Enfermedades/estadística & datos numéricos , Enfermedad de Chagas/transmisión , Chile/epidemiología , Humanos , Valores de Referencia , Factores de Tiempo
5.
Ecography ; 41(9): 1411-1427, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32313369

RESUMEN

Biogeography is an implicit and fundamental component of almost every dimension of modern biology, from natural selection and speciation to invasive species and biodiversity management. However, biogeography has rarely been integrated into human or veterinary medicine nor routinely leveraged for global health management. Here we review the theory and application of biogeography to the research and management of human infectious diseases, an integration we refer to as 'pathogeography'. Pathogeography represents a promising framework for understanding and decomposing the spatial distributions, diversity patterns and emergence risks of human infectious diseases into interpretable components of dynamic socio-ecological systems. Analytical tools from biogeography are already helping to improve our understanding of individual infectious disease distributions and the processes that shape them in space and time. At higher levels of organization, biogeographical studies of diseases are rarer but increasing, improving our ability to describe and explain patterns that emerge at the level of disease communities (e.g. co-occurrence, diversity patterns, biogeographic regionalisation). Even in a highly globalized world most human infectious diseases remain constrained in their geographic distributions by ecological barriers to the dispersal or establishment of their causal pathogens, reservoir hosts and/or vectors. These same processes underpin the spatial arrangement of other taxa, such as mammalian biodiversity, providing a strong empirical 'prior' with which to assess the potential distributions of infectious diseases when data on their occurrence is unavailable or limited. In the absence of quality data, generalized biogeographic patterns could provide the earliest (and in some cases the only) insights into the potential distributions of many poorly known or emerging, or as-yet-unknown, infectious disease risks. Encouraging more community ecologists and biogeographers to collaborate with health professionals (and vice versa) has the potential to improve our understanding of infectious disease systems and identify novel management strategies to improve local, global and planetary health.

6.
Rev Biol Trop ; 64(4): 1661-82, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29465944

RESUMEN

Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions.


Asunto(s)
Seguimiento de Parámetros Ecológicos/métodos , Bosques , Mapeo Geográfico , Indígenas Sudamericanos/etnología , Tecnología de Sensores Remotos/métodos , Análisis Espacio-Temporal , Agricultura/estadística & datos numéricos , Conservación de los Recursos Naturales , Pradera , Humanos , Modelos Logísticos , Valores de Referencia , Reproducibilidad de los Resultados , Ríos , Venezuela/etnología
7.
Conserv Biol ; 29(3): 805-15, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25580729

RESUMEN

We used data on number of carcasses of wildlife species sold in 79 bushmeat markets in a region of Nigeria and Cameroon to assess whether species composition of a market could be explained by anthropogenic pressures and environmental variables around each market. More than 45 mammal species from 9 orders were traded across all markets; mostly ungulates and rodents. For each market, we determined median body mass, species diversity (game diversity), and taxa that were principal contributors to the total number of carcasses for sale (game dominance). Human population density in surrounding areas was significantly and negatively related to the percentage ungulates and primates sold in markets and significantly and positively related to the proportion of rodents. The proportion of carnivores sold was higher in markets with high human population densities. Proportion of small-bodied mammals (<1 kg) sold in markets increased as human population density increased, but proportion of large-bodied mammals (>10 kg) decreased as human population density increased. We calculated an index of game depletion (GDI) for each market from the sum of the total number of carcasses traded per annum and species, weighted by the intrinsic rate of natural increase (rmax ) of each species, divided by individuals traded in a market. The GDI of a market increased as the proportion of fast-reproducing species (highest rmax ) increased and as the representation of species with lowest rmax (slow-reproducing) decreased. The best explanatory factor for a market's GDI was anthropogenic pressure-road density, human settlements with >3000 inhabitants, and nonforest vegetation. High and low GDI were significantly differentiated by human density and human settlements with >3000 inhabitants. Our results provided empirical evidence that human activity is correlated with more depleted bushmeat faunas and can be used as a proxy to determine areas in need of conservation action.


Asunto(s)
Conservación de los Recursos Naturales , Mamíferos , Carne , Densidad de Población , Animales , Camerún , Comercio , Conservación de los Recursos Naturales/economía , Humanos , Carne/economía , Nigeria
8.
Syst Biol ; 62(1): 1-21, 2013 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-22744774

RESUMEN

This study uses the amphibian species of the Mediterranean basin to develop a consistent procedure based on fuzzy sets with which biogeographic regions and biotic transition zones can be objectively detected and reliably mapped. Biogeographical regionalizations are abstractions of the geographical organization of life on Earth that provide frameworks for cataloguing species and ecosystems, for answering basic questions in biogeography, evolutionary biology, and systematics, and for assessing priorities for conservation. On the other hand, limits between regions may form sharply defined boundaries along some parts of their borders, whereas elsewhere they may consist of broad transition zones. The fuzzy set approach provides a heuristic way to analyse the complexity of the biota within an area; significantly different regions are detected whose mutual limits are sometimes fuzzy, sometimes clearly crisp. Most of the regionalizations described in the literature for the Mediterranean biogeographical area present a certain degree of convergence when they are compared within the context of fuzzy interpretation, as many of the differences found between regionalizations are located in transition zones, according to our case study. Compared with other classification procedures based on fuzzy sets, the novelty of our method is that both fuzzy logic and statistics are used together in a synergy in order to avoid arbitrary decisions in the definition of biogeographic regions and transition zones.


Asunto(s)
Anfibios/fisiología , Lógica Difusa , Filogeografía/métodos , Anfibios/clasificación , Animales , Ecosistema , Región Mediterránea , Modelos Estadísticos , Filogenia
9.
Pathog Glob Health ; 118(5): 397-407, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972071

RESUMEN

Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.


Asunto(s)
Aedes , Cambio Climático , Dengue , Mosquitos Vectores , Fiebre Amarilla , Fiebre Amarilla/transmisión , Fiebre Amarilla/epidemiología , Animales , Dengue/transmisión , Dengue/epidemiología , Aedes/virología , Aedes/fisiología , Humanos , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología
10.
Travel Med Infect Dis ; 52: 102529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36549415

RESUMEN

International travellers are exposed to pathogens not commonly found in their countries of residence, including West Nile virus (WNV). Due to the difficulty of its diagnosis, little is known about its distribution in Africa. Understanding the geographic extent of risk of WNV infections is a necessity for both travellers and clinicians who advise and treat them, since there is no human vaccine. To date, there is no risk map for WNV infections in humans in Africa. Having a high-resolution risk map for the virus could be of relevance before the trip, to take preventive measures, and after the trip, for appropriate diagnosis of the disease. Virus detection in humans along the African continent were collected from official reports, and published scientific research for the period 1940 to 2020, and then geo-referenced in order to use biogeographical modelling for WNV. Models were based on fuzzy logic and machine learning algorithms and were designed to identify the environmental drivers that explain the distribution of human cases and to locate favourable areas for infections. We elaborated a high-resolution risk map for WNV infections that highlights favourable areas for infections in Africa. Although WNV infections are widely spread across Africa, the risk of the disease is not homogenously distributed. Popular tourist destinations such as Morocco, Tunisia, and South Africa, are high-risk areas for WNV infection.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Fiebre del Nilo Occidental/epidemiología , Marruecos , Sudáfrica
11.
One Health ; 17: 100585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37359749

RESUMEN

West Nile virus (WNV) is a globally significant vector-borne disease that is primarily transmitted between birds and mosquitoes. Recently, there has been an increase in WNV in southern Europe, with new cases reported in more northern regions. Bird migration plays a crucial role in the introduction of WNV in distant areas. To better understand and address this complex issue, we adopted a One Health approach, integrating clinical, zoological, and ecological data. We analyzed the role of migratory birds in the Palaearctic-African region in the spread of WNV across Africa and Europe. We categorized bird species into breeding and wintering chorotypes based on their distribution during the breeding season in the Western Palaearctic and the wintering season in the Afrotropical region, respectively. By linking these chorotypes to the occurrence of WNV outbreaks in both continents throughout the annual bird migration cycle, we investigated the relationship between migratory patterns and virus spread. We demonstrate that WNV-risk areas are interconnected through the migration of birds. We identified a total of 61 species that potentially contribute to the intercontinental spread of the virus or its variants, as well as pinpointed high-risk areas for future outbreaks. This interdisciplinary approach, which considers the interconnectedness of animals, humans, and ecosystems, represents a pioneering effort to establish connections between zoonotic diseases across continents. The findings of our study can aid in anticipating the arrival of new WNV strains and predicting the occurrence of other re-emerging diseases. By incorporating various disciplines, we can enhance our understanding of these complex dynamics and provide valuable insights for proactive and comprehensive disease management strategies.

12.
Syst Biol ; 60(5): 645-60, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21471308

RESUMEN

Chorotypes--statistically significant groups of coincident distribution areas--constitute biogeographic units that are fuzzy by nature. This quality has been referred to in the literature but has not been analyzed in depth or methodologically developed. The present work redefines chorotypes as fuzzy sets from a pragmatic perspective and basically focuses on the methodological and interpretative implications of this approach. The amphibian fauna in the Iberian Peninsula was used as an example to explore the fuzzy nature of chorotypes. The method on which this article is based is a widely used technique to define chorotypes. This method involves the fuzziness that is inherent to the identification between degree of similarity and degree of membership and includes a probabilistic analysis of the classification for the objective delimitation of chorotypes. The main innovation of this paper is a procedure to analyze chorotypes as fuzzy biogeographic units. A set of fuzzy parameters to deal with the biogeographic interpretation of fuzzy chorotypes is also described. A computer program has been developed and is freely available. History may be related to the degree of fuzziness of chorotypes. In our example, with amphibian distributions in Iberia, less fuzzy chorotypes could have a historical explanation, and the internal fuzziness of chorotypes increases with their distance to hypothetical Pleistocene refugia.


Asunto(s)
Anfibios/fisiología , Ecosistema , Lógica Difusa , Geografía/métodos , Algoritmos , Anfibios/clasificación , Animales , Biodiversidad , Portugal , España
13.
ScientificWorldJournal ; 2012: 819328, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028254

RESUMEN

We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity.


Asunto(s)
Biodiversidad , Ecología/métodos , Ambiente , Mamíferos/fisiología , Animales , Argentina , Clima , Geografía , Modelos Lineales , Dinámica Poblacional , Análisis de Componente Principal , Temperatura
14.
Commun Biol ; 5(1): 530, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654842

RESUMEN

Yellow fever is transmitted by mosquitoes among human and non-human primates. In the last decades, infections are occurring in areas that had been free from yellow fever for decades, probably as a consequence of the rapid spread of mosquito vectors, and of the virus evolutionary dynamic in which non-human primates are involved. This research is a pathogeographic assessment of where enzootic cycles, based on primate assemblages, could be amplifying the risk of yellow fever infections, in the context of spatial changes shown by the disease since the late 20th century. In South America, the most relevant spread of disease cases affects parts of the Amazon basin and a wide area of southern Brazil, where forest fragmentation could be activating enzootic cycles next to urban areas. In Africa, yellow fever transmission is apparently spreading from the west of the continent, and primates could be contributing to this in savannas around rainforests. Our results are useful for identifying new areas that should be prioritised for vaccination, and suggest the need of deep yellow fever surveillance in primates of South America and Africa.


Asunto(s)
Culicidae , Fiebre Amarilla , Animales , Brasil/epidemiología , Mosquitos Vectores , Vacunación , Fiebre Amarilla/epidemiología , Fiebre Amarilla/prevención & control
15.
PLoS Negl Trop Dis ; 15(1): e0009022, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411739

RESUMEN

West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.


Asunto(s)
Fiebre del Nilo Occidental/epidemiología , Clima , Brotes de Enfermedades , Ambiente , Europa (Continente)/epidemiología , Humanos , Ríos , Fiebre del Nilo Occidental/transmisión
16.
PLoS Negl Trop Dis ; 15(6): e0009496, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34097704

RESUMEN

Dengue is a viral disease transmitted by mosquitoes. The rapid spread of dengue could lead to a global pandemic, and so the geographical extent of this spread needs to be assessed and predicted. There are also reasons to suggest that transmission of dengue from non-human primates in tropical forest cycles is being underestimated. We investigate the fine-scale geographic changes in transmission risk since the late 20th century, and take into account for the first time the potential role that primate biogeography and sylvatic vectors play in increasing the disease transmission risk. We apply a biogeographic framework to the most recent global dataset of dengue cases. Temporally stratified models describing favorable areas for vector presence and for disease transmission are combined. Our models were validated for predictive capacity, and point to a significant broadening of vector presence in tropical and non-tropical areas globally. We show that dengue transmission is likely to spread to affected areas in China, Papua New Guinea, Australia, USA, Colombia, Venezuela, Madagascar, as well as to cities in Europe and Japan. These models also suggest that dengue transmission is likely to spread to regions where there are presently no or very few reports of occurrence. According to our results, sylvatic dengue cycles account for a small percentage of the global extent of the human case record, but could be increasing in relevance in Asia, Africa, and South America. The spatial distribution of factors favoring transmission risk in different regions of the world allows for distinct management strategies to be prepared.


Asunto(s)
Dengue/epidemiología , Brotes de Enfermedades , Zoonosis Virales , Aedes , Animales , Dengue/transmisión , Dengue/veterinaria , Virus del Dengue/fisiología , Geografía , Humanos , Mosquitos Vectores/virología , Primates/virología
17.
Environ Manage ; 43(6): 1256-68, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19430827

RESUMEN

Agricultural change has transformed large areas of traditional farming landscapes, leading to important changes in the species community assemblages in most European countries. We suspect that the drastic changes in land-use that have occurred in Andalusia (southern Spain) over recent decades, may have affected the distribution and abundance of game species in this region. This article compares the distribution of the main game species in Andalusia during the 1960s and 1990s, using data from maps available from the Mainland Spanish Fish, Game and National Parks Service and from recent datasets on hunting yield distributions, respectively. Big-game and small-game species were significantly segregated in southern Spain during the 1990s, as two clearly independent chorotypes (groups of species whose abundances are similarly distributed) were obtained from the classification analysis. In contrast, big-game and small-game species were not significantly segregated several decades ago, when there was only one chorotype consisting of small-game species and wild boar. The other three ungulates did not constitute a significant chorotype, as they showed positive correlations with some species in the group mentioned above. These changes seem to be a consequence of the transformations that have occurred in the Iberian Mediterranean landscape over the last few decades. The abandoning of traditional activities, and the consequent formation of dense scrubland and woodland, has led to an expansion of big-game species, and a decrease of small-game species in mountain areas. Moreover, agricultural intensification has apparently depleted small-game species populations in some agricultural areas. On the other hand, the increasingly intensive hunting management could be artificially boosting this segregation between small-game and big-game species. Our results suggest that the conservation and regeneration of traditional agricultural landscapes (like those predominating in the 1960s) should be a priority for the conservation of small-game species.


Asunto(s)
Biodiversidad , Geografía , Agricultura , Animales , Demografía , Explotaciones Pesqueras , Geografía/clasificación , Modelos Estadísticos , Dinámica Poblacional , España , Tiempo
18.
Parasit Vectors ; 12(1): 428, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488198

RESUMEN

BACKGROUND: Over the last decade, reports about dengue cases have increase worldwide, which is particularly worrisome in South America due to the historic record of dengue outbreaks from the seventeenth century until the first half of the twentieth century. Dengue is a viral disease that involves insect vectors, namely Aedes aegypti and Ae. albopictus, which implies that, to prevent and combat outbreaks, it is necessary to understand the set of ecological and biogeographical factors affecting both the vector species and the virus. METHODS: We contribute with a methodology based on fuzzy logic that is helpful to disentangle the main factors that determine favorable environmental conditions for vectors and diseases. Using favorability functions as fuzzy logic modelling technique and the fuzzy intersection, union and inclusion as fuzzy operators, we were able to specify the territories at biogeographical risk of dengue outbreaks in South America. RESULTS: Our results indicate that the distribution of Ae. aegypti mostly encompasses the biogeographical framework of dengue in South America, which suggests that this species is the principal vector responsible for the geographical extent of dengue cases in the continent. Nevertheless, the intersection between the favorability for dengue cases and the union of the favorability for any of the vector species provided a comprehensive map of the biogeographical risk for dengue. CONCLUSIONS: Fuzzy logic is an appropriate conceptual and operational tool to tackle the nuances of the vector-illness biogeographical interaction. The application of fuzzy logic may be useful in decision-making by the public health authorities to prevent, control and mitigate vector-borne diseases.


Asunto(s)
Dengue/epidemiología , Mosquitos Vectores/virología , Animales , Dengue/transmisión , Virus del Dengue , Brotes de Enfermedades/prevención & control , Lógica Difusa , Geografía , Mosquitos Vectores/fisiología , Factores de Riesgo , América del Sur
19.
Pest Manag Sci ; 74(1): 111-119, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28722344

RESUMEN

BACKGROUND: Numerous small and medium-sized mammal pests cause widespread and economically significant damage to crops all over the globe. However, most research on pest species has focused on accounts of the level of damage. There are fewer studies concentrating on the description of crop damage caused by pests at large geographical scales, or on analysis of the ecological and anthropogenic factors correlated with these observed patterns. We investigated the relationship between agricultural damage by the European rabbit (Oryctolagus cuniculus) and environmental and anthropogenic variables throughout Spain. RESULTS: Rabbit damage was mainly concentrated within the central-southern regions of Spain. We found that rabbit damage increased significantly between the early 2000s and 2013. Greater losses were typical of those areas where farming dominated and natural vegetation was scarce, where main railways and highways were present, and where environmental conditions were generally favourable for rabbit populations to proliferate. CONCLUSION: From our analysis, we suggest that roads and railway lines act as potential corridors along which rabbits can spread. The recent increase in Spain of such infrastructure may explain the rise in rabbit damage reported in this study. Our approach is valuable as a method for assessing drivers of wildlife pest damage at large spatial scales, and can be used to propose methods to reduce human - wildlife conflict. © 2017 Society of Chemical Industry.


Asunto(s)
Agricultura , Productos Agrícolas , Cadena Alimentaria , Conejos , Animales , Control de Plagas , España
20.
Sci Rep ; 7(1): 14291, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29085050

RESUMEN

Ebola virus disease (EVD) is a contagious, severe and often lethal form of hemorrhagic fever in humans. The association of EVD outbreaks with forest clearance has been suggested previously but many aspects remained uncharacterized. We used remote sensing techniques to investigate the association between deforestation in time and space, with EVD outbreaks in Central and West Africa. Favorability modeling, centered on 27 EVD outbreak sites and 280 comparable control sites, revealed that outbreaks located along the limits of the rainforest biome were significantly associated with forest losses within the previous 2 years. This association was strongest for closed forests (>83%), both intact and disturbed, of a range of tree heights (5->19 m). Our results suggest that the increased probability of an EVD outbreak occurring in a site is linked to recent deforestation events, and that preventing the loss of forests could reduce the likelihood of future outbreaks.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Brotes de Enfermedades/estadística & datos numéricos , Fiebre Hemorrágica Ebola/epidemiología , Tecnología de Sensores Remotos , África Central/epidemiología , África Occidental/epidemiología , Brotes de Enfermedades/prevención & control , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Actividades Humanas , Humanos , Bosque Lluvioso , Análisis Espacio-Temporal , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA