Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1456: 49-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261423

RESUMEN

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, associated with substantial burden and large economical costs. Notwithstanding various conventional antidepressant treatment options, a large portion of depressed people (ca. 30%) fails to respond to first-line treatment, resulting in treatment-resistant depression (TRD). Although non-response to multiple antidepressant interventions is a common outcome, a consensus definition of TRD is not yet available. In practice, TRD is applied when two or more successive treatments with different antidepressants are not working. The last decade's intense research into new medicines for TRD has led to two developments, using typical or serotonergic (psilocybin, ayahuasca) and atypical (glutamatergic) psychedelics (ketamine, esketamine). Both approaches, although via different entrance mechanism, exhibit a fast onset but also long-lasting antidepressant effect far beyond the biological presence of the drug in the body, strongly indicating that downstream mechanisms activated by signaling cascades in the brain are involved. The present chapter describes the clinical development of psilocybin and esketamine for TRD and discusses the problems involved in the use of a proper placebo because of the psychotomimetic (psilocybin) or dissociative (ketamine) effects that interfere with performing "blind" studies. Nevertheless, intranasal esketamine was developed and approved for TRD, whereas psilocybin has shown positive results. Adverse effects and tolerability of both drugs in the dose ranges used are generally acceptable. The emergence of anti-TRD medicines for treatment of a very severe disease is a breakthrough in psychiatry.


Asunto(s)
Antidepresivos , Trastorno Depresivo Resistente al Tratamiento , Alucinógenos , Ketamina , Psilocibina , Humanos , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Alucinógenos/uso terapéutico , Alucinógenos/efectos adversos , Alucinógenos/farmacología , Ketamina/uso terapéutico , Ketamina/efectos adversos , Psilocibina/uso terapéutico , Psilocibina/efectos adversos , Psilocibina/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/efectos adversos , Antidepresivos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Resultado del Tratamiento
2.
Adv Exp Med Biol ; 1191: 121-140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32002926

RESUMEN

Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.


Asunto(s)
Ansiolíticos/uso terapéutico , Trastornos de Ansiedad/fisiopatología , Ansiedad/fisiopatología , Descubrimiento de Drogas , Neurotransmisores/metabolismo , Investigación Biomédica Traslacional , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/metabolismo , Humanos
3.
BMC Pregnancy Childbirth ; 19(1): 479, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31805950

RESUMEN

BACKGROUND: Antenatal depression affects 10-20% of pregnant women. Around 2-4% of European pregnant women use antidepressant treatment, most commonly selective serotonin reuptake inhibitors (SSRIs). Poor pregnancy outcomes, such as preterm birth and low birth weight, have been described in women with antenatal depression and in pregnant women on SSRI treatment. However, the effects of antenatal depression and antidepressant treatment on the placenta are largely unknown. The aim of this work was to compare placental gene and protein expression in healthy women, women with untreated antenatal depression and women on antidepressant treatment during pregnancy. METHODS: Placental samples from 47 controls, 25 depressed and 45 SSRI-treated women were analysed by means of qPCR using custom-designed TaqMan low-density arrays (TLDAs) for 44 genes previously known to be involved in the pathophysiology of depression, and expressed in the placenta. Moreover, placental protein expression was determined by means of immunohistochemistry in 37 healthy controls, 13 women with untreated depression and 21 women on antidepressant treatment. Statistical comparisons between groups were performed by one-way ANOVA or the Kruskal-Wallis test. RESULTS: Nominally significant findings were noted for HTR1A and NPY2R, where women with untreated depression displayed higher gene expression than healthy controls (p < 0.05), whereas women on antidepressant treatment had similar expression as healthy controls. The protein expression analyses revealed higher expression of HTR1A in placentas from women on antidepressant treatment, than in placentas from healthy controls (p < 0.05). CONCLUSION: The differentially expressed HTR1A, both at the gene and the protein level that was revealed in this study, suggests the involvement of HTR1A in the effect of antenatal depression on biological mechanisms in the placenta. More research is needed to elucidate the role of depression and antidepressant treatment on the placenta, and, further, the effect on the fetus.


Asunto(s)
Antidepresivos/efectos adversos , Depresión/tratamiento farmacológico , Placenta/metabolismo , Complicaciones del Embarazo/tratamiento farmacológico , Proteínas Gestacionales/metabolismo , Adulto , Antidepresivos/uso terapéutico , Depresión/genética , Depresión/metabolismo , Femenino , Expresión Génica , Voluntarios Sanos , Humanos , Inmunohistoquímica , Placenta/patología , Embarazo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo , Proteínas Gestacionales/genética , Efectos Tardíos de la Exposición Prenatal , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Serotonina 5-HT1A/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
4.
Depress Anxiety ; 33(11): 1023-1030, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27232288

RESUMEN

BACKGROUND: Peripartum depression is a common cause of pregnancy- and postpartum-related morbidity. The production of corticotropin-releasing hormone (CRH) from the placenta alters the profile of hypothalamus-pituitary-adrenal axis hormones and may be associated with postpartum depression. The purpose of this study was to assess, in nondepressed pregnant women, the possible association between CRH levels in pregnancy and depressive symptoms postpartum. METHODS: A questionnaire containing demographic data and the Edinburgh Postnatal Depression Scale (EPDS) was filled in gestational weeks 17 and 32, and 6 week postpartum. Blood samples were collected in week 17 for assessment of CRH. A logistic regression model was constructed, using postpartum EPDS score as the dependent variable and log-transformed CRH levels as the independent variable. Confounding factors were included in the model. Subanalyses after exclusion of study subjects with preterm birth, newborns small for gestational age (SGA), and women on corticosteroids were performed. RESULTS: Five hundred thirty-five women without depressive symptoms during pregnancy were included. Logistic regression showed an association between high CRH levels in gestational week 17 and postpartum depressive symptoms, before and after controlling for several confounders (unadjusted OR = 1.11, 95% CI 1.01-1.22; adjusted OR = 1.13, 95% CI 1.02-1.26; per 0.1 unit increase in log CRH). Exclusion of women with preterm birth and newborns SGA as well as women who used inhalation corticosteroids during pregnancy did not alter the results. CONCLUSIONS: This study suggests an association between high CRH levels in gestational week 17 and the development of postpartum depressive symptoms, among women without depressive symptoms during pregnancy.

5.
Behav Neurosci ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388112

RESUMEN

Slight and hidden hearing loss in children have been linked to cognitive and social difficulties, and yet the neurobiological mechanisms behind these issues remain poorly understood. Most animal models focus on severe hearing loss, leaving the effects of hidden or slight hearing loss largely unexplored. To uncover the neural mechanisms connecting slight/hidden hearing loss to cognitive and social challenges, we induced hearing loss in young (4-week-old) Wistar rats through noise exposure. We then examined cognitive function (object recognition test) and social behavior (juvenile play behavior and social interaction). Changes in brain anatomy were assessed using cortical thickness and hippocampal size measurements, while (immuno)histochemical staining investigated neuronal circuitry maturation (myelin basic protein, parvalbumin, and perineuronal nets) and neurogenesis (doublecortin). Noise-exposed rats displayed slight high-frequency hearing loss (around 20 dB) and hidden hearing loss at other tested frequencies. This slight/hidden hearing loss was associated with impaired object recognition but did not alter social behavior. Slight/hidden hearing loss was associated with reduced myelin basic protein expression in the corpus callosum but no other alterations in cortical thickness, hippocampal size, or other markers of maturation and neurogenesis were found. These findings show that even slight/hidden hearing loss can lead to subtle brain alterations tied to cognitive deficits. This study emphasizes the need for further research to fully understand the brain changes associated with slight/hidden hearing loss and to pinpoint the mechanisms connecting these changes to behavioral deficits. This information is crucial to develop interventions to prevent the cognitive and social consequences of hearing loss. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

6.
ACS Chem Neurosci ; 15(6): 1074-1083, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38421943

RESUMEN

About 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood. In this study, we aim to elucidate how disturbances in the maternal serotonergic system affect the villous tissue of the placenta by assessing whole transcriptomes in the placentas of women with healthy pregnancies and women with depression and treated with the SSRI fluoxetine during pregnancy. Twelve placentas of the Biology, Affect, Stress, Imaging and Cognition in Pregnancy and the Puerperium (BASIC) project were selected for RNA sequencing to examine differentially expressed genes: six male infants and six female infants, equally distributed over women treated with SSRI and without SSRI treatment. Our results show that more genes in the placenta of male infants show changed expression associated with fluoxetine treatment than in placentas of female infants, stressing the importance of sex-specific analyses. In addition, we identified genes related to extracellular matrix organization to be significantly enriched in placentas of male infants born to women treated with fluoxetine. It remains to be established whether the differentially expressed genes that we found to be associated with SSRI treatment are the result of the SSRI treatment itself, the underlying depression, or a combination of the two.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Inhibidores Selectivos de la Recaptación de Serotonina , Lactante , Femenino , Humanos , Masculino , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Mujeres Embarazadas , Transcriptoma , Placenta/metabolismo , Perfilación de la Expresión Génica , Efectos Tardíos de la Exposición Prenatal/metabolismo
7.
Front Neurosci ; 17: 1224959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781259

RESUMEN

Lifelong premature ejaculation (PE) in men lacks an adequate on-demand pharmacological treatment. Although selective serotonin reuptake inhibitors (SSRIs) are used for PE they only work after chronic treatment, or if used on-demand, less adequately than chronic SSRI treatment. It has been shown that the addition of a behaviorally silent 5-HT1A-receptor antagonist to an SSRI can generate acute inhibitory effects on male rat sexual behavior. Atlas987 is a selective 5-HT1A-receptor antagonist with equal potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT1A receptors in rat and human brain. To investigate whether Atlas987 together with the SSRI paroxetine, a combination called Enduro, induces acute inhibitory effects on male rat sexual behavior, we tested Enduro in Wistar rats in a dose-dependent manner. We first tested the 5-HT1A receptor antagonist Atlas987 in 8-OH-DPAT induced serotonergic behavior in rats. Second, we tested Enduro in a dose-dependent manner in male sexual behavior. Third, we tested the effective time window of Enduro's action, and lastly, we measured the plasma levels of Atlas987 and paroxetine over an 8-h period. Results showed that Enduro acutely and dose-dependently reduced the number of ejaculations and increased the ejaculation latencies. The behavioral pattern induced reflected a specific effect on sexual behavior excluding non-specific effects like sedation or sensoric-motoric disturbances. The time-window of activity of Enduro showed that this sexual inhibitory activity was at least found in a 1-4 h' time window after administration. Plasma levels showed that in this time frame both Atlas987 and paroxetine are present. In conclusion, in rats, Enduro is successful in acutely inhibiting sexual behavior. These results may be therapeutically attractive as "on demand" treatment for life-long premature ejaculation in men.

8.
Neuropsychopharmacology ; 47(9): 1620-1632, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35102259

RESUMEN

Many pregnant women experience symptoms of depression, and are often treated with selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine. In utero exposure to SSRIs and maternal depressive symptoms is associated with sex-specific effects on the brain and behavior. However, knowledge about the neurobiological mechanisms underlying these sex differences is limited. In addition, most animal research into developmental SSRI exposure neglects the influence of maternal adversity. Therefore, we used a rat model relevant to depression to investigate the molecular effects of perinatal fluoxetine exposure in male and female juvenile offspring. We performed RNA sequencing and targeted DNA methylation analyses on the prefrontal cortex and basolateral amygdala; key regions of the corticolimbic circuit. Perinatal fluoxetine enhanced myelin-related gene expression in the prefrontal cortex, while inhibiting it in the basolateral amygdala. SSRI exposure and maternal adversity interacted to affect expression of genes such as myelin-associated glycoprotein (Mag) and myelin basic protein (Mbp). We speculate that altered myelination reflects altered brain maturation. In addition, these effects are stronger in males than in females, resembling known behavioral outcomes. Finally, Mag and Mbp expression correlated with DNA methylation, highlighting epigenetic regulation as a potential mechanism for developmental fluoxetine-induced changes in myelination.


Asunto(s)
Fluoxetina , Efectos Tardíos de la Exposición Prenatal , Animales , Epigénesis Genética , Femenino , Fluoxetina/farmacología , Expresión Génica , Hipocampo , Humanos , Masculino , Vaina de Mielina/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Inhibidores Selectivos de la Recaptación de Serotonina
9.
Behav Processes ; 190: 104458, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34252565

RESUMEN

The assessment of sexual behavior in male rats with the aim of unraveling underlying neurobiological mechanisms has in the recent decades been reduced to the annotation of mounts, intromissions and ejaculations. To provide a better understanding of the structure and patterns of copulation, it is necessary to extend and tailor the analysis to the natural organization of male rat copulation. This will lead to better formulation of hypotheses about neurobiological underpinnings of behavior. Mounts and intromissions are naturally organized in mount bouts consisting of one or more copulatory behaviors and are interspersed with time outs. We hypothesized that time outs and the post-ejaculatory interval (inter-copulatory intervals) are related and possibly under the control of a common copulatory inhibition mechanism that is the result of penile sensory stimulation. To test this hypothesis, we analyzed sexual behavior in male rats of three different cohorts from three different laboratories. Results showed that the post-ejaculatory interval and mean time out duration are strongly correlated in all cohorts analyzed. In addition, we showed that individual time out duration is at least partially predicted by the sum of sensory stimulation of copulatory components in the preceding mount bout, with more penile stimulation associated with longer time outs. These findings suggest that both time out and post-ejaculatory interval duration may be determined by the magnitude of sensory stimulation, which inhibits copulation. Whether the same neural pathways are involved in the central orchestration of both time outs and the post-ejaculatory interval should be subject to future studies.


Asunto(s)
Copulación , Eyaculación , Animales , Masculino , Ratas , Conducta Sexual Animal
10.
Psychopharmacology (Berl) ; 238(12): 3653-3667, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34557946

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are increasingly prescribed as medication for various affective disorders during pregnancy. SSRIs cross the placenta and affect serotonergic neurotransmission in the fetus, but the neurobehavioral consequences for the offspring remain largely unclear. Recent rodent research has linked perinatal SSRI exposure to alterations in both social and non-social aspects of behavior. However, this research has mainly focused on behavior within simplified environments. The current study investigates the effects of perinatal SSRI exposure on social and non-social investigation behaviors of adult rat offspring upon introduction to a novel seminatural environment with unknown conspecifics. During the perinatal period (gestational day 1 until postnatal day 21), rat dams received daily treatment with either an SSRI (fluoxetine, 10 mg/kg) or vehicle. Adult male and female offspring were observed within the first hour after introduction to a seminatural environment. The results showed that perinatal fluoxetine exposure altered aspects of non-social investigation behaviors, while not altering social investigation behaviors. More specifically, both fluoxetine-exposed males and females spent more total time on locomotor activity than controls. Furthermore, fluoxetine-exposed females spent less time exploring objects and specific elements in the environment. The data suggest that perinatal exposure to SSRIs leads to a quicker, less detailed investigation strategy in novel environments and that the alteration is mostly pronounced in females.


Asunto(s)
Fluoxetina , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal , Femenino , Masculino , Embarazo , Ratas , Inhibidores Selectivos de la Recaptación de Serotonina , Estrés Psicológico
12.
Neurobiol Dis ; 37(3): 747-55, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20034565

RESUMEN

In order to identify the molecular mechanisms that may contribute to the enhanced susceptibility to depression under serotonin transporter (SERT) dysfunction, we analyzed the expression of brain-derived neurotrophic factor (BDNF), a key player in neuronal plasticity, which is implicated in the etiology and treatment of depression. We found that BDNF levels were significantly reduced in the hippocampus and prefrontal cortex of SERT knockout rats, through transcriptional changes that affect different neurotrophin isoforms. The reduction of BDNF gene expression observed in prefrontal cortex is due, at least in part, to epigenetic changes that affect the promoter regions of exons IV and VI. Moreover, BDNF gene expression is also significantly reduced in leukocytes from healthy subjects carrying the S allele of the 5-HTTLPR, suggesting that the changes observed in SERT mutant rats may also be present in humans and may confer enhanced vulnerability to mood disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo/genética , Trastorno Depresivo/metabolismo , Predisposición Genética a la Enfermedad/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Serotonina/metabolismo , Adulto , Anciano , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Análisis Mutacional de ADN , Trastorno Depresivo/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Epigénesis Genética/genética , Exones/genética , Femenino , Frecuencia de los Genes/genética , Técnicas de Inactivación de Genes , Pruebas Genéticas , Genotipo , Humanos , Leucocitos/metabolismo , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Ratas
13.
Gut Microbes ; 11(4): 735-753, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31971855

RESUMEN

Up to 10% of women use selective serotonin reuptake inhibitor (SSRI) antidepressants during pregnancy and postpartum. Recent evidence suggests that SSRIs are capable of altering the gut microbiota. However, the interaction between maternal depression and SSRI use on bacterial community composition and the availability of microbiota-derived metabolites during pregnancy and lactation is not clear. We studied this using a rat model relevant to depression, where adult females with a genetic vulnerability and stressed as pups show depressive-like behaviors. Throughout pregnancy and lactation, females received the SSRI fluoxetine or vehicle. High-resolution 16S ribosomal RNA marker gene sequencing and targeted metabolomic analysis were used to assess the fecal microbiome and metabolite availability, respectively. Not surprisingly, we found that pregnancy and lactation segregate in terms of fecal microbiome diversity and composition, accompanied by changes in metabolite availability. However, we also showed that fluoxetine treatment altered important features of this transition from pregnancy to lactation most clearly in previously stressed dams, with lower fecal amino acid concentrations. Amino acid concentrations, in turn, correlated negatively with the relative abundance of bacterial taxa such as Prevotella and Bacteroides. Our study demonstrates an important relationship between antidepressant use during the perinatal period and maternal fecal metabolite availability in a rat model relevant to depression, possibly through parallel changes in the gut microbiome. Since microbial metabolites contribute to homeostasis and development, insults to the maternal microbiome by SSRIs might have health consequences for mother and offspring.


Asunto(s)
Antidepresivos de Segunda Generación/uso terapéutico , Bacterias/crecimiento & desarrollo , Depresión/tratamiento farmacológico , Fluoxetina/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Lactancia , Metaboloma/efectos de los fármacos , Complicaciones del Embarazo/tratamiento farmacológico , Aminoácidos/metabolismo , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Depresión/microbiología , Heces/química , Heces/microbiología , Femenino , Metabolómica , Embarazo , Complicaciones del Embarazo/microbiología , Ratas , Ratas Wistar , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
14.
Psychoneuroendocrinology ; 120: 104796, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32711369

RESUMEN

Serotonin plays an important role in adult female sexual behavior, however little is known about the influence of serotonin during early development on sexual functioning in adulthood. During early development, serotonin acts as neurotrophic factor, while it functions as a modulatory neurotransmitter in adulthood. The occurrence of serotonin release, could thus have different effects on behavioral outcomes, depending on the developmental period in which serotonin is released. Because serotonin is involved in the development of the HPG axis which is required for puberty establishment, serotonin could also alter expression patterns of for instance the estrogen receptor ɑ (ERɑ). The aim of our study was to investigate the effects of increased serotonin levels during early development on adult female rat sexual behavior during the full behavioral estrus in a seminatural environment. To do so, rats were perinatally exposed with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10 mg/kg FLX) and sexual performance was tested during adulthood. All facets of female sexual behavior between the first and last lordosis (behavioral estrus), and within each copulation bout of the behavioral estrus were analyzed. Besides the length and onset of the behavioral estrus and the sexual behaviors patterns, other social and conflict behavior were also investigated. In addition, we studied the effects of perinatal FLX exposure on ERɑ expression patterns in the medial preoptic nucleus, ventromedial nucleus of the hypothalamus, medial amygdala, bed nucleus of the stria terminalis, and the dorsal raphé nucleus. The results showed that perinatal fluoxetine exposure has no effect on adult female sexual behavior. The behavioral estrus of FLX-females had the same length and pattern as CTR-females. In addition, FLX- and CTR-females showed the same amount of paracopulatory behavior and lordosis, both during the full behavioral estrus and the "most active bout". Furthermore, no differences were found in the display of social and conflict behaviors, nor in ERɑ expression patterns in the brain. We conclude that increases in serotonin levels during early development do not have long-term consequences for female sexual behavior in adulthood.


Asunto(s)
Fluoxetina/farmacología , Conducta Sexual Animal/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Animales , Animales Recién Nacidos/metabolismo , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Estro/efectos de los fármacos , Femenino , Embarazo , Área Preóptica/metabolismo , Ratas , Ratas Wistar , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Conducta Social
15.
Front Behav Neurosci ; 14: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296313

RESUMEN

Brain serotonin (5-HT) neurotransmission plays an important role in male sexual behavior and it is well established that activating 5-HT1 A receptors in rats facilitate ejaculatory behavior. However, the relative contribution of 5-HT1 A somatodendritic autoreceptors and heteroreceptors in this pro-sexual behavior is unclear. Moreover, it is unclear whether the contribution of somatodendritic 5-HT1 A autoreceptors and postsynaptic 5-HT1 A heteroreceptors alter when extracellular 5-HT levels are chronically increased. Serotonin transporter knockout (SERT-/-) rats exhibit enhanced extracellular 5-HT levels and desensitized 5-HT1 A receptors. These rats model neurochemical changes underlying chronic SSRI-induced sexual dysfunction. We want to determine the role of presynaptic versus postsynaptic 5-HT1 A receptors in the pro-sexual effects of 5-HT1 A receptor agonists in SERT+/+ and in SERT-/- rats. Therefore, acute effects of the biased 5-HT1 A receptor agonists F-13714, a preferential 5-HT1 A autoreceptor agonist, or F-15599, a preferential 5-HT1 A heteroreceptor agonist, and S15535 a mixed 5-HT1 A autoreceptor agonist/heteroreceptor antagonist, on male sexual behavior were assessed. A clear and stable genotype effect was found after training where SERT+/+ performed sexual behavior at a higher level than SERT-/- rats. Both F-15599 and F-13714 induced pro-sexual activity in SERT+/+ and SERT-/- animals. Compared to SERT+/+, the F13714-dose-response curve in SERT-/- rats was shifted to the right. SERT+/+ and SERT-/- rats responded similar to F15599. Within both SERT+/+ and SERT-/- rats the potency of F-13714 was much stronger compared to F-15599. S15535 had no effect on sexual behavior in either genotype. In SERT+/+ and SERT-/- rats that were selected on comparable low sexual activity (SERT+/+ 3 or less ejaculations and SERT-/- 5 or less ejaculations in 10 weeks) S15535 also did not influence sexual behavior. The two biased compounds with differential effects on 5-HT1 A auto- and hetero-receptors, exerted pro-sexual activity in both SERT+/+ and SERT-/- rats. Applying these specific pharmacological tools has not solved whether pre- or post-synaptic 5-HT1 A receptors are involved in pro-sexual activity. Moreover, the inactivity of S15535 in male sexual behavior in either genotype was unexpected. The question is whether the in vivo pharmacological profile of the different 5-HT1 A receptor ligands used, is sufficient to differentiate pre- and/or post-synaptic 5-HT1 A receptor contributions in male rat sexual behavior.

16.
Behav Brain Res ; 392: 112657, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32339551

RESUMEN

Many women diagnosed with a major depression continue or initiate antidepressant treatment during pregnancy. Both maternal stress and selective serotonin inhibitor (SSRI) antidepressant treatment during pregnancy have been associated with changes in offspring behavior, including increased anxiety and depressive-like behavior. Our aim was to investigate the effects of the SSRI fluoxetine (FLX), with and without the presence of a maternal depression, on affective behavior in male and female rat offspring. As reduced serotonin transporter (SERT) availability has been associated with altered behavioral outcome, both offspring with normal (SERT+/+) and reduced (SERT+/-) SERT expression were included. For our animal model of maternal depression, SERT+/- dams exposed to early life stress were used. Perinatal FLX treatment and early life stress in dams (ELSD) had sex- and genotype-specific effects on affective behavior in the offspring. In female offspring, perinatal FLX exposure interacted with SERT genotype to increase anxiety and depressive-like behavior in SERT+/+, but not SERT+/-, females. In male offspring, ELSD reduced anxiety and interacted with SERT genotype to decrease depressive-like behavior in SERT+/-, but not SERT+/+, males. Altogether, SERT+/+ female offspring appear to be more sensitive than SERT+/- females to the effects of perinatal FLX exposure, while SERT+/- male offspring appear more sensitive than SERT+/+ males to the effects of ELSD on affective behavior. Our data suggest a role for offspring SERT genotype and sex in FLX and ELSD-induced effects on affective behavior, thereby contributing to our understanding of the effects of perinatal SSRI treatment on offspring behavior later in life.


Asunto(s)
Afecto , Fluoxetina , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Estrés Psicológico , Animales , Femenino , Masculino , Embarazo , Ratas , Afecto/efectos de los fármacos , Animales Recién Nacidos , Antidepresivos/farmacología , Ansiedad , Trastornos de Ansiedad/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Depresión , Trastorno Depresivo/tratamiento farmacológico , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Genotipo , Conducta Materna/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas Wistar , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Factores Sexuales
17.
Physiol Behav ; 222: 112899, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348809

RESUMEN

SSRIs are commonly used to treat pregnant women with depression. However, SSRIs can cross the placenta and affect the development of the fetus. The effects of perinatal SSRI exposure, and especially the effects on social behavior, are still incompletely documented. This study first aims to investigate whether rats show prosocial behavior in the form of consolation behavior. Secondly, it aims to investigate whether perinatal SSRI exposure affects this prosocial behavior. At last, we investigate whether the behavior changed after the rats had been exposed to an additional white-noise stressor. Rat dams received 10 mg/kg/d fluoxetine (FLX) or vehicle (CTR) via oral gavage from gestational day 1 until postnatal day 21. At adulthood, the rat offspring were housed in four cohorts of 4 females and 4 males in a seminatural environment. As prosocial behaviors are more prominent after stressful situations, we investigated the behavioral response of rats immediately after natural aggressive encounters (fights). Additionally, we studied whether a stressful white-noise exposure would alter this response to the aggressive encounters. Our study indicates that CTR-female rats are able to show third party prosocial behavior in response to witnessing aggressive encounters between conspecifics in a seminatural environment. In addition, we showed that perinatal FLX exposure impairs the display of prosocial behavior in female rats. Moreover, we found no signs of prosocial behavior in CTR- and FLX-males after natural aggressive encounters. After white-noise exposure the effects in third party prosocial behavior of CTR-females ceased to exist. We conclude that female rats are able to show prosocial behavior, possibly in the form of consolation behavior. In addition, the negative effects of perinatal fluoxetine exposure on prosocial behavior could provide additional evidence that SSRI treatment during pregnancy could contribute to the risk for social impairments in the offspring.


Asunto(s)
Fluoxetina , Efectos Tardíos de la Exposición Prenatal , Adulto , Altruismo , Animales , Conducta Animal , Femenino , Humanos , Masculino , Embarazo , Ratas , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Estrés Psicológico
18.
Psychopharmacology (Berl) ; 237(9): 2589-2600, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32676774

RESUMEN

RATIONALE: Many depressed women continue antidepressant treatment during pregnancy. Selective serotonin reuptake inhibitor (SSRI) treatment during pregnancy increases the risk for abnormal social development of the child, including increased aggressive or defiant behavior, with unknown effects on sexual behavior. OBJECTIVES: Our aim was to investigate the effects of perinatal SSRI treatment and maternal depression, both separately and combined, on aggressive and sexual behavior in male rat offspring. METHODS: Heterozygous serotonin transporter (SERT± ) knockout dams exposed to early life stress (ELSD) were used as an animal model of maternal depression. Early life stress consisted of separating litters from their mother for 6 h a day on postnatal day (PND)2-15, resulting in a depressive-like phenotype in adulthood. Depressive-like dams were treated with fluoxetine (FLX, 10 mg/kg) or vehicle throughout pregnancy and lactation (gestational day 1 until PND 21). Male offspring were tested for aggressive and sexual behavior in adulthood. As lifelong reductions in SERT expression are known to alter behavioral outcome, offspring with normal (SERT+/+) and reduced (SERT± ) SERT expression were assessed. RESULTS: Perinatal FLX treatment reduced offensive behavior and the number of animals attacking and increased the latency to attack, especially in SERT+/+ offspring. Perinatal FLX treatment reduced the mounting frequency in SERT+/+ offspring. ELSD increased offensive behavior, without affecting sexual behavior in SERT± offspring. CONCLUSIONS: Overall, our research demonstrates that perinatal FLX treatment and ELSD have opposite effects on aggressive behavior, with little impact on sexual behavior of male offspring.


Asunto(s)
Agresión/efectos de los fármacos , Agresión/psicología , Fluoxetina/farmacología , Efectos Tardíos de la Exposición Prenatal/psicología , Conducta Sexual Animal/efectos de los fármacos , Estrés Psicológico/psicología , Animales , Antidepresivos/efectos adversos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Femenino , Fluoxetina/efectos adversos , Fluoxetina/uso terapéutico , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Wistar , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Conducta Sexual Animal/fisiología , Estrés Psicológico/tratamiento farmacológico
19.
Psychopharmacology (Berl) ; 237(8): 2555-2568, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32533210

RESUMEN

RATIONALE: Selective serotonin reuptake inhibitor (SSRI) antidepressants are increasingly prescribed during pregnancy. Changes in serotonergic signaling during human fetal development have been associated with changes in brain development and with changes in affective behavior in adulthood. The suprachiasmatic nucleus (SCN) is known to be modulated by serotonin and it is therefore assumed that SSRIs may affect circadian rhythms. However, effects of perinatal SSRI treatment on circadian system functioning in the offspring are largely unknown. OBJECTIVE: Our aim was to investigate the effects of perinatal exposure to the SSRI fluoxetine (FLX) on circadian behavior, affective behavior, and 5-HT1A receptor sensitivity in female rats. In addition, we studied the expression of clock genes and the 5-HT1A receptor in the SCN, as they are potentially involved in underlying mechanisms contributing to changes in circadian rhythms. RESULTS: Perinatal FLX exposure shortened the free-running tau in response to the 5-HT1A/7 agonist 8-OH-DPAT. However, FLX exposure did not alter anxiety, stress coping, and 5-HT1A receptor sensitivity. No differences were found in 5-HT1A receptor and clock genes Per1, Per2, Cry1, and Cry2 SCN gene expression. CONCLUSIONS: Perinatal FLX exposure altered the response to a phase-shifting challenge in female rats, whether this may pose health risks remains to be investigated.


Asunto(s)
Adaptación Psicológica/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Adaptación Psicológica/fisiología , Animales , Antidepresivos/farmacología , Ritmo Circadiano/fisiología , Femenino , Ratas , Ratas Transgénicas , Ratas Wistar , Serotonina/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiología
20.
Neuropharmacology ; 151: 84-97, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30959021

RESUMEN

The use of selective serotonin reuptake inhibitors (SSRI) during pregnancy has increased tremendously, but the consequences for the offspring remain largely unclear. Several studies have described potential effects of perinatal SSRI-exposure on neurobehavioral outcomes using simplified rodent test set-ups, however these set-ups only assess a small fraction of the behavior. For translational purposes it is important to take the environmental influences into account which children are exposed to in real life. By using a seminatural environmental set-up, this study is the first to assess behavioral outcomes in offspring exposed to perinatal SSRI exposure under seminatural circumstances. Mothers received daily the SSRI fluoxetine (FLX, 10 mg/kg p.o.) or vehicle (CTR) from gestational day 1 until postnatal day 21. To assess the effect of FLX exposure during early development, female and male offspring were behaviorally tested in the seminatural environment at adulthood. Baseline behavior was measured in addition to responses during and after stressful white-noise events. Behavior was observed on two days, day 4 on which females were sexually non-receptive, and day 7, on which females were sexual receptive. Perinatal FLX exposure reduced general activity in females and increased behavior related to a social context in both males and females. After a stressful white-noise event some behaviors switched. Whereas FLX-females switch from resting socially to resting more solitarily, FLX-males show an increase in self-grooming behavior after the stressor and showed more freezing behavior in the open area. We conclude that perinatal FLX exposure leads to alterations in social and stress-coping behaviors in adulthood, when observed in a seminatural environment. Whether these adaptations in behavior are advantageous or disadvantageous remains to be established.


Asunto(s)
Adaptación Psicológica/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Fluoxetina/administración & dosificación , Efectos Tardíos de la Exposición Prenatal , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Conducta Social , Estrés Psicológico , Animales , Ambiente , Femenino , Embarazo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA