RESUMEN
Impairment of ribosome function activates the MAPKKK ZAK, leading to activation of mitogen-activated protein (MAP) kinases p38 and JNK and inflammatory signaling. The mechanistic basis for activation of this ribotoxic stress response (RSR) remains completely obscure. We show that the long isoform of ZAK (ZAKα) directly associates with ribosomes by inserting its flexible C terminus into the ribosomal intersubunit space. Here, ZAKα binds helix 14 of 18S ribosomal RNA (rRNA). An adjacent domain in ZAKα also probes the ribosome, and together, these sensor domains are critically required for RSR activation after inhibition of both the E-site, the peptidyl transferase center (PTC), and ribotoxin action. Finally, we show that ablation of the RSR response leads to organismal phenotypes and decreased lifespan in the nematode Caenorhabditis elegans (C. elegans). Our findings yield mechanistic insight into how cells detect ribotoxic stress and provide experimental in vivo evidence for its physiological importance.
Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Quinasas Quinasa Quinasa PAM/metabolismo , Peptidil Transferasas/metabolismo , ARN Ribosómico 18S/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Activación Enzimática , Células HeLa , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Conformación Proteica , Dominios Proteicos , ARN Ribosómico 18S/genética , Homología de Secuencia , Transducción de SeñalRESUMEN
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Músculo Esquelético , Animales , Quinasas Quinasa Quinasa PAM , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Fosforilación , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
The cerebrospinal fluid (CSF) is a key matrix for discovery of biomarkers relevant for prognosis and the development of therapeutic targets in pediatric central nervous system malignancies. However, the wide range of protein concentrations and age-related differences in children makes such discoveries challenging. In addition, pediatric CSF samples are often sparse and first prioritized for clinical purposes. The present work focused on optimizing each step of the proteome analysis workflow to extract the most detailed proteome information possible from the limited CSF resources available for research purposes. The strategy included applying sequential ultracentrifugation to enrich for extracellular vesicles (EV) in addition to analysis of a small volume of raw CSF, which allowed quantification of 1351 proteins (+55% relative to raw CSF) from 400 µL CSF. When including a spectral library, a total of 2103 proteins (+240%) could be quantified. The workflow was optimized for CSF input volume, tryptic digestion method, gradient length, mass spectrometry data acquisition method and database search strategy to quantify as many proteins a possible. The fully optimized workflow included protein aggregation capture (PAC) digestion, paired with data-independent acquisition (DIA, 21 min gradient) and allowed 2989 unique proteins to be quantified from only 400 µL CSF, which is a 340% increase in proteins compared to analysis of a tryptic digest of raw CSF.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Proteoma , Humanos , Niño , Proteoma/análisis , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Proteómica/métodos , Proteínas del Líquido Cefalorraquídeo/análisis , Proteínas del Líquido Cefalorraquídeo/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Biomarcadores de Tumor/líquido cefalorraquídeo , Flujo de Trabajo , Preescolar , Ultracentrifugación , Adolescente , Femenino , Masculino , LactanteRESUMEN
Human plasma is a rich source of biomedical information and biomarkers. However, the enormous dynamic range of plasma proteins limits its accessibility to mass spectrometric (MS) analysis. Here, we show that enrichment of extracellular vesicles (EVs) by ultracentrifugation increases plasma proteome depth by an order of magnitude. With this approach, more than two thousand proteins are routinely and reproducibly quantified by label-free quantification and data independent acquisition (DIA) in single-shot liquid chromatography tandem mass spectrometry runs of less than one hour. We present an optimized plasma proteomics workflow that enables high-throughput with very short chromatographic gradients analyzing hundred samples per day with deep proteome coverage, especially when including a study-specific spectral library generated by repeated injection and gas-phase fractionation of pooled samples. Finally, we test the workflow on clinical biobank samples from malignant melanoma patients in immunotherapy to demonstrate the improved proteome coverage supporting the potential for future biomarker discovery.
Asunto(s)
Vesículas Extracelulares , Proteoma , Humanos , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas/métodos , Vesículas Extracelulares/metabolismo , UltracentrifugaciónRESUMEN
Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF).We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts.This is the largest dataset of cardiac protein expression from human samples collected in vivo It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis.
Asunto(s)
Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Prolapso de la Válvula Mitral/metabolismo , Proteoma/metabolismo , Fibrilación Atrial/complicaciones , Fibrilación Atrial/fisiopatología , Biopsia , Cromatografía Líquida de Alta Presión , Ontología de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Prolapso de la Válvula Mitral/genética , Proteómica , Regulación hacia ArribaRESUMEN
Tristetraprolin (TTP) is an RNA-binding protein and an essential factor of posttranscriptional repression of cytokine biosynthesis in macrophages. Its activity is temporally inhibited by LPS-induced p38MAPK/MAPKAPK2/3-mediated phosphorylation, leading to a rapid increase in cytokine expression. We compared TTP expression and cytokine production in mouse bone marrow-derived macrophages of different genotypes: wild type, MAPKAP kinase 2 (MK2) deletion (MK2 knockout [KO]), MK2/3 double deletion (MK2/3 double KO [DKO]), TTP-S52A-S178A (TTPaa) knock-in, as well as combined MK2 KO/TTPaa and MK2/3 DKO/TTPaa. The comparisons reveal that MK2/3 are the only LPS-induced kinases for S52 and S178 of TTP and the role of MK2 and MK3 in the regulation of TNF biosynthesis is not restricted to phosphorylation of TTP at S52/S178 but includes independent processes, which could involve other TTP phosphorylations (such as S316) or other substrates of MK2/3 or p38MAPK Furthermore, we found differences in the dependence of various cytokines on the cooperation between MK2/3 deletion and TTP mutation ex vivo. In the cecal ligation and puncture model of systemic inflammation, a dramatic decrease of cytokine production in MK2/3 DKO, TTPaa, and DKO/TTPaa mice compared with wild-type animals is observed, thus confirming the role of the MK2/3/TTP signaling axis in cytokine production also in vivo. These findings improve our understanding of this signaling axis and could be of future relevance in the treatment of inflammation.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinas/biosíntesis , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/deficienciaRESUMEN
Our heart is comprised of many different cell types that all contribute to cardiac function. An important step in deciphering the molecular complexity of our heart is to decipher the molecular composition of the various cardiac cell types. Here we set out to delineate a comprehensive protein expression profile of the two most prevalent cell types in the heart: cardiomyocytes and cardiac fibroblasts. To this end, we isolated cardiomyocytes and fibroblasts from rat hearts and combined state-of-the-art flow cytometry with high-resolution mass spectrometry to investigate their proteome profiles right after isolation. We measured and quantified 5240 proteins in cardiomyocytes and 6328 proteins in cardiac fibroblasts. In addition to providing a global protein profile for these cardiac cell types, we also present specific findings, such as unique expression of ion channels and transcription factors for each cell type. For instance, we show that the sodium channel Scn7a and the cation channel Trpm7 are expressed in fibroblasts but not in cardiomyocytes, which underscores the importance of investigating the endogenous cell host prior to functional studies. Our dataset represents a valuable resource on protein expression profiles in these two primary cardiac cells types.
Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma , Proteómica , Animales , Biomarcadores , Células Cultivadas , Cromatografía Liquida , Perfilación de la Expresión Génica , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem , TranscriptomaRESUMEN
BACKGROUND/AIMS: The voltage-gated potassium channel KV11.1 has been originally cloned from the brain and is expressed in a variety of tissues. The role of phosphorylation for channel function is a matter of debate. In this study, we aimed to elucidate the extent and role of protein kinase D mediated phosphorylation. METHODS: We employed mass spectrometry, whole-cell patch clamp electrophysiology, confocal microscopy, site-directed mutagenesis, and western blotting. RESULTS: Using brain tissue from rat and mouse, we mapped several phosphorylated KV11.1 residues by LC-MS mass spectrometry and identified protein kinase D (PKD1) as possible regulatory kinase. Co-expression of KV11.1 with PKD1 reduced current amplitudes without altering protein levels or surface expression of the channel. Based on LC-MS results from in vivo and HEK293 cell experiments we chose four KV11.1 mutant candidates for further functional analysis. Ablation of the putative PKD phosphorylation site in the mutant S284A increased the maximal current indicating S284 as a main PKD target in KV11.1. CONCLUSIONS: Our data might help mitigating a long-standing controversy in the field regarding PKC regulation of KV11.1. We propose that PKD1 mediates the PKC effects on KV11.1 and we found that PKD targets S284 in the N-terminus of the channel.
Asunto(s)
Encéfalo/metabolismo , Canal de Potasio ERG1/metabolismo , Proteína Quinasa C/metabolismo , Sustitución de Aminoácidos , Animales , Canal de Potasio ERG1/genética , Células HEK293 , Humanos , Ratones , Mutación Missense , Fosforilación/genética , Proteína Quinasa C/genética , RatasRESUMEN
BACKGROUND: The cerebrospinal fluid (CSF) proteome could offer important insights into central nervous system (CNS) malignancies. To advance proteomic research in pediatric CNS cancer, the current study aims to (1) evaluate past mass spectrometry-based workflows and (2) synthesize previous CSF proteomic data, focusing on both qualitative summaries and quantitative re-analysis. MAIN: In our analysis of 11 studies investigating the CSF proteome in pediatric patients with acute lymphoblastic leukemia (ALL) or primary brain tumors, we observed significant methodological variability. This variability negatively affects comparative analysis of the included studies, as per GRADE criteria for quality of evidence. The qualitative summaries covered 161 patients and 134 non-tumor controls, while the application of validation cohort varied among the studies. The quantitative re-analysis comprised 15 B-ALL vs 6 "healthy" controls and 15 medulloblastoma patients vs 22 non-tumor controls. Certain CSF proteins were identified as potential indicators of specific malignancies or stages of neurotoxicity during chemotherapy, yet definitive conclusions were impeded by inconsistent data. There were no proteins with statistically significant differences when comparing cases versus controls that were corroborated across studies where quantitative reanalysis was feasible. From a gene ontology enrichment, we observed that age disparities between unmatched case and controls may mislead to protein correlations more indicative of age-related CNS developmental stages rather than neuro-oncological disease. Despite efforts to batch correct (HarmonizR) and impute missing values, merging of dataset proved unfeasible and thereby limited meaningful data integration across different studies. CONCLUSION: Infrequent publications on rare pediatric cancer entities, which often involve small sample sizes, are inherently prone to result in heterogeneous studies-particularly when conducted within a rapidly evolving field like proteomics. As a result, obtaining clear evidence, such as CSF proteome biomarkers for CNS dissemination or early-stage neurotoxicity, is currently impractical. Our general recommendations comprise the need for standardized methodologies, collaborative efforts, and improved data sharing in pediatric CNS malignancy research. We specifically emphasize the possible importance of considering natural age-related variations in CSF due to different CNS development stages when matching cases and controls in future studies.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Espectrometría de Masas , Proteómica , Humanos , Proteómica/métodos , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Proteoma , Proteínas del Líquido Cefalorraquídeo/análisis , Proteínas del Líquido Cefalorraquídeo/líquido cefalorraquídeoRESUMEN
Proteins are the primary targets of almost all small molecule drugs. However, even the most selectively designed drugs can potentially target several unknown proteins. Identification of potential drug targets can facilitate design of new drugs and repurposing of existing ones. Current state-of-the-art proteomics methodologies enable screening of thousands of proteins against a limited number of drug molecules. Here we report the development of a label-free quantitative proteomics approach that enables proteome-wide screening of small organic molecules in a scalable, reproducible, and rapid manner by streamlining the proteome integral solubility alteration (PISA) assay. We used rat organs ex-vivo to determine organ specific targets of medical drugs and enzyme inhibitors to identify drug targets for common drugs such as Ibuprofen. Finally, global drug profiling revealed overarching trends of how small molecules affect the proteome through either direct or indirect protein interactions.
Asunto(s)
Proteoma , Proteómica , Solubilidad , Animales , Proteoma/metabolismo , Ratas , Proteómica/métodos , Ibuprofeno/farmacología , Masculino , Especificidad de Órganos , Ratas Sprague-DawleyRESUMEN
FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Drosophila , Factores de Transcripción Forkhead , Longevidad , Estrés Oxidativo , Animales , Longevidad/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Bombyx/genética , Bombyx/metabolismo , Bombyx/fisiología , Drosophila melanogaster/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión GénicaRESUMEN
To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.
Asunto(s)
Factores Despolimerizantes de la Actina , Actomiosina , Factores Despolimerizantes de la Actina/metabolismo , Movimiento Celular/fisiología , Actomiosina/metabolismo , Citocinesis , Cofilina 1/metabolismo , Matriz Extracelular/metabolismo , Células Dendríticas/metabolismoRESUMEN
The TNF receptor-interacting protein kinases (RIPK)-1 and 3 are regulators of extrinsic cell death response pathways, where RIPK1 makes the cell survival or death decisions by associating with distinct complexes mediating survival signaling, caspase activation or RIPK3-dependent necroptotic cell death in a context-dependent manner. Using a mass spectrometry-based screen to find new components of the ripoptosome/necrosome, we discovered the protein-arginine methyltransferase (PRMT)-5 as a direct interaction partner of RIPK1. Interestingly, RIPK3 but not RIPK1 was then found to be a target of PRMT5-mediated symmetric arginine dimethylation. A conserved arginine residue in RIPK3 (R486 in human, R415 in mouse) was identified as the evolutionarily conserved target for PRMT5-mediated symmetric dimethylation and the mutations R486A and R486K in human RIPK3 almost completely abrogated its methylation. Rescue experiments using these non-methylatable mutants of RIPK3 demonstrated PRMT5-mediated RIPK3 methylation to act as an efficient mechanism of RIPK3-mediated feedback control on RIPK1 activity and function. Therefore, this study reveals PRMT5-mediated RIPK3 methylation as a novel modulator of RIPK1-dependent signaling.
RESUMEN
The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.
Asunto(s)
Envejecimiento , MAP Quinasa Quinasa Quinasa 3 , Obesidad , Especies Reactivas de Oxígeno , Ribosomas , Estrés Fisiológico , Animales , Ratones , Envejecimiento/metabolismo , MAP Quinasa Quinasa Quinasa 3/genética , MAP Quinasa Quinasa Quinasa 3/metabolismo , Obesidad/metabolismo , Biosíntesis de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Ribosomas/metabolismo , Pez Cebra , Ratones NoqueadosRESUMEN
Species determination based on genetic evidence is an indispensable tool in archaeology, forensics, ecology, and food authentication. Most available analytical approaches involve compromises with regard to the number of detectable species, high cost due to low throughput, or a labor-intensive manual process. Here, we introduce "Species by Proteome INvestigation" (SPIN), a shotgun proteomics workflow for analyzing archaeological bone capable of querying over 150 mammalian species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rapid peptide chromatography and data-independent acquisition (DIA) with throughput of 200 samples per day reduce expensive MS time, whereas streamlined sample preparation and automated data interpretation save labor costs. We confirm the successful classification of known reference bones, including domestic species and great apes, beyond the taxonomic resolution of the conventional peptide mass fingerprinting (PMF)-based Zooarchaeology by Mass Spectrometry (ZooMS) method. In a blinded study of degraded Iron-Age material from Scandinavia, SPIN produces reproducible results between replicates, which are consistent with morphological analysis. Finally, we demonstrate the high throughput capabilities of the method in a high-degradation context by analyzing more than two hundred Middle and Upper Palaeolithic bones from Southern European sites with late Neanderthal occupation. While this initial study is focused on modern and archaeological mammalian bone, SPIN will be open and expandable to other biological tissues and taxa.
Asunto(s)
Proteoma , Proteómica , Animales , Arqueología/métodos , Cromatografía Liquida , Mamíferos , Péptidos , Proteómica/métodos , Espectrometría de Masas en TándemRESUMEN
Data-independent acquisition (DIA) for liquid chromatography tandem mass spectrometry (LC-MS/MS) can improve the depth and reproducibility of the acquired proteomics datasets. DIA solves some limitations of the conventional data-dependent acquisition (DDA) strategy, for example, bias in intensity-dependent precursor selection and limited dynamic range. These advantages, together with the recent developments in speed, sensitivity, and resolution in MS technology, position DIA as a great alternative to DDA. Recently, we demonstrated that the benefits of DIA are extendable to phosphoproteomics workflows, enabling increased depth, sensitivity, and reproducibility of our analysis of phosphopeptide-enriched samples. However, computational data analysis of phospho-DIA samples have some specific challenges and requirements to the software and downstream processing workflows. A step-by-step guide to analyze phospho-DIA raw data using either spectral libraries or directDIA in Spectronaut is presented here. Furthermore, a straightforward protocol to perform differential phosphorylation site analysis using the output results from Spectronaut is described.
Asunto(s)
Proteómica , Cromatografía Liquida , Proteoma , Reproducibilidad de los Resultados , Programas Informáticos , Espectrometría de Masas en TándemRESUMEN
Post-translational modification with small ubiquitin-related modifier (SUMO) alters the function of many proteins, but the molecular mechanisms and consequences of this modification are still poorly defined. During a screen for novel SUMO1 targets, we identified the ubiquitin-conjugating enzyme E2-25K (Hip2). SUMO attachment severely impairs E2-25K ubiquitin thioester and unanchored ubiquitin chain formation in vitro. Crystal structures of E2-25K(1-155) and of the E2-25K(1-155)-SUMO conjugate (E2-25K(*)SUMO) indicate that SUMO attachment interferes with E1 interaction through its location on the N-terminal helix. The SUMO acceptor site in E2-25K, Lys14, does not conform to the consensus site found in most SUMO targets (PsiKXE), and functions only in the context of an alpha-helix. In contrast, adjacent SUMO consensus sites are modified only when in unstructured peptides. The demonstration that secondary structure elements are part of SUMO attachment signals could contribute to a better prediction of SUMO targets.
Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Consenso , Cristalización , Células HeLa , Humanos , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteína SUMO-1/metabolismoRESUMEN
The sinus node is a collection of highly specialised cells constituting the heart's pacemaker. The molecular underpinnings of its pacemaking abilities are debated. Using high-resolution mass spectrometry, we here quantify >7,000 proteins from sinus node and neighbouring atrial muscle. Abundances of 575 proteins differ between the two tissues. By performing single-nucleus RNA sequencing of sinus node biopsies, we attribute measured protein abundances to specific cell types. The data reveal significant differences in ion channels responsible for the membrane clock, but not in Ca2+ clock proteins, suggesting that the membrane clock underpins pacemaking. Consistently, incorporation of ion channel expression differences into a biophysically-detailed atrial action potential model result in pacemaking and a sinus node-like action potential. Combining our quantitative proteomics data with computational modeling, we estimate ion channel copy numbers for sinus node myocytes. Our findings provide detailed insights into the unique molecular make-up of the cardiac pacemaker.
Asunto(s)
Relojes Biológicos/fisiología , Péptidos/química , Péptidos/metabolismo , Proteómica , Nodo Sinoatrial/metabolismo , Transcriptoma , Potenciales de Acción , Animales , Cromatografía Liquida , Regulación de la Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Espectrometría de Masas en TándemRESUMEN
The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM)-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers) has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Replicación del ADN , Proteoma/metabolismo , Sumoilación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estrés FisiológicoRESUMEN
Squamous cell carcinomas (SCC) arising in upper parts of the aerodigestive tract are among the leading causes of death worldwide. EGFR has been found to play an essential role in driving the malignancy of SCC of the upper aerodigestive tract (SCCUAT), but, despite this, clinical results using a range of different EGFR-targeted agents have been disappointing. Cetuximab is currently the only EGFR-targeted agent approved by the FDA for treatment of SCCUAT. However, intrinsic and acquired cetuximab resistance is a major problem for effective therapy. Thus, a better understanding of the mechanisms responsible for cetuximab resistance is valuable for development of the next generation of antibody therapeutics. In order to better understand the underlying mechanisms of cetuximab resistance in SCCUAT, we established from cetuximab-sensitive models cell lines with acquired resistance to cetuximab by continuous selective pressure in vitro and in vivo Our results show that resistant clones maintain partial dependency on EGFR and that receptor tyrosine kinase plasticity mediated by HER3 and IGF1R plays an essential role. A multitarget mAb mixture against EGFR, HER3, and IGF1R was able to overcome cetuximab resistance in vitro To our surprise, these findings could be extended to include SCCUAT cell lines with intrinsic resistance to cetuximab, suggesting that the triad consisting of EGFR, HER3, and IGF1R plays a key role in SCCUAT. Our results thus provide a rationale for simultaneous targeting of EGFR, HER3, and IGF1R in SCCUAT. Mol Cancer Ther; 15(7); 1614-26. ©2016 AACR.