Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1101501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144034

RESUMEN

In sickle cell disease (SCD), heme released during intravascular hemolysis promotes oxidative stress, inflammation, and vaso-occlusion. Conversely, free heme can also activate expression of antioxidant and globin genes. Heme binds to the transcription factor BACH1, which represses NRF2-mediated gene transcription. ASP8731, is a selective small molecule inhibitor of BACH1. We investigated the ability of ASP8731 to modulate pathways involved in SCD pathophysiology. In HepG2 liver cells, ASP8731 increased HMOX1 and FTH1 mRNA. In pulmonary endothelial cells, ASP8731 decreased VCAM1 mRNA in response to TNF-α and blocked a decrease in glutathione in response to hemin. Townes-SS mice were gavaged once per day for 4 weeks with ASP8731, hydroxyurea (HU) or vehicle. Both ASP8731 and HU inhibited heme-mediated microvascular stasis and in combination, ASP8731 significantly reduced microvascular stasis compared to HU alone. In Townes-SS mice, ASP8731 and HU markedly increased heme oxygenase-1 and decreased hepatic ICAM-1, NF-kB phospho-p65 protein expression in the liver, and white blood cell counts. In addition, ASP8731 increased gamma-globin expression and HbF+ cells (F-cells) as compared to vehicle-treated mice. In human erythroid differentiated CD34+ cells, ASP8731 increased HGB mRNA and increased the percentage of F-cells 2-fold in manner similar to HU. ASP8731 and HU when given together induced more HbF+ cells compared to either drug alone. In CD34+ cells from one donor that was non-responsive to HU, ASP8731 induced HbF+ cells ~2-fold. ASP8731 and HU also increased HBG and HBA, but not HBB mRNA in erythroid differentiated CD34+ cells derived from SCD patients. These data indicate that BACH1 may offer a new therapeutic target to treat SCD.

2.
J Med Chem ; 65(13): 9418-9446, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35762533

RESUMEN

CD38 is one of the major nicotinamide adenine dinucleotide (NAD+)- and nicotinamide adenine dinucleotide phosphate (NADP+)-consuming enzymes in mammals. NAD+, NADP+, and their reduced counterparts are essential coenzymes for numerous enzymatic reactions, including the maintenance of cellular and mitochondrial redox balance. CD38 expression is upregulated in age-associated inflammation as well as numerous metabolic diseases, resulting in cellular and mitochondrial dysfunction. Recent literature studies demonstrate that CD38 is activated upon ischemia/reperfusion (I/R), leading to a depletion of NADP+, which results in endothelial damage and myocardial infarction in the heart. Despite increasing evidence of CD38 involvement in various disease states, relatively few CD38 enzymatic inhibitors have been reported to date. Herein, we describe a CD38 enzymatic inhibitor (MK-0159, IC50 = 3 nM against murine CD38) that inhibits CD38 in in vitro assay. Mice treated with MK-0159 show strong protection from myocardial damage upon cardiac I/R injury compared to those treated with NAD+ precursors (nicotinamide riboside) or the known CD38 inhibitor, 78c.


Asunto(s)
ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Glicoproteínas de Membrana/antagonistas & inhibidores , NAD , Daño por Reperfusión , Animales , Inhibidores Enzimáticos , Isquemia , Mamíferos/metabolismo , Ratones , NAD/metabolismo , NADP/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
3.
Mitochondrion ; 46: 51-58, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29458111

RESUMEN

Duchenne muscular dystrophy (DMD) is a recessive, fatal X-linked disease that is characterized by progressive skeletal muscle wasting due to the absence of dystrophin, which is an a essential protein that bridges the inner cytoskeleton and extra-cellular matrix. This study set out to characterize the mitochondria in primary muscle satellite cell derived myoblasts from mdx mice and wild type control mice. Compared to wild type derived cells the mdx derived cells have reduced mitochondrial bioenergetics and have fewer mitochondria. Here, we demonstrate that a novel PPARδ modulator improves mitochondrial function in the mdx mice, which supports that modulating PPARδ may be therapeutically beneficial in DMD patients.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias/patología , Distrofia Muscular de Duchenne/patología , Mioblastos/patología , PPAR delta/metabolismo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA