Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 28(7): 1117-1135, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535187

RESUMEN

In healthy adult skeletal muscle fibers microtubules form a three-dimensional grid-like network. In the mdx mouse, a model of Duchenne muscular dystrophy (DMD), microtubules are mostly disordered, without periodicity. These microtubule defects have been linked to the mdx mouse pathology. We now report that increased expression of the beta 6 class V ß-tubulin (tubb6) contributes to the microtubule changes of mdx muscles. Wild-type muscle fibers overexpressing green fluorescent protein (GFP)-tubb6 (but not GFP-tubb5) have disorganized microtubules whereas mdx muscle fibers depleted of tubb6 (but not of tubb5) normalize their microtubules, suggesting that increasing tubb6 is toxic. However, tubb6 increases spontaneously during differentiation of mouse and human muscle cultures. Furthermore, endogenous tubb6 is not uniformly expressed in mdx muscles but is selectively increased in fiber clusters, which we identify as regenerating. Similarly, mdx-based rescued transgenic mice that retain a higher than expected tubb6 level show focal expression of tubb6 in subsets of fibers. Tubb6 is also upregulated in cardiotoxin-induced mouse muscle regeneration, in human myositis and DMD biopsies, and the tubb6 level correlates with that of embryonic myosin heavy chain, a regeneration marker. In conclusion, modulation of a ß-tubulin isotype plays a role in muscle differentiation and regeneration. Increased tubb6 expression and microtubule reorganization are not pathological per se but reflect a return to an earlier developmental stage. However, chronic elevation of tubb6, as occurs in the mdx mouse, may contribute to the repeated cycles of regeneration and to the pathology of the disease.


Asunto(s)
Músculo Esquelético/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/fisiología , Animales , Distrofina/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Microtúbulos/metabolismo , Microtúbulos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos , Cultivo Primario de Células , Regeneración , Activación Transcripcional , Regulación hacia Arriba
2.
Hum Mol Genet ; 27(3): 451-462, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194514

RESUMEN

Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo.


Asunto(s)
Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Mutación Missense/genética , Animales , Western Blotting , Línea Celular , ADN Complementario/genética , Técnica del Anticuerpo Fluorescente , Miembro Anterior/metabolismo , Miembro Anterior/fisiología , Humanos , Ratones , Ratones Transgénicos , Distrofia Muscular de Duchenne/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Hum Mol Genet ; 25(22): 4951-4961, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28171583

RESUMEN

Absence of the protein dystrophin causes Duchenne muscular dystrophy. Dystrophin directly binds to microtubules in vitro, and its absence in vivo correlates with disorganization of the subsarcolemmal microtubule lattice, increased detyrosination of α-tubulin, and altered redox signaling. We previously demonstrated that the dystrophin homologue utrophin neither binds microtubules in vitro nor rescues microtubule lattice organization when overexpressed in muscles of dystrophin-deficient mdx mice. Here, we fine-mapped the dystrophin domain necessary for microtubule binding to spectrin-like repeats 20­22. We show that transgenic mdx mice expressing a full-length dystrophin/utrophin chimera completely lacking microtubule binding activity are surprisingly rescued for all measured dystrophic phenotypes, including full restoration of microtubule lattice organization. Conversely, despite the presence of dystrophin at the sarcolemma, ß-sarcoglycan-deficient skeletal muscle presents with a disorganized and densified microtubule lattice. Finally, we show that the levels of α-tubulin detyrosination remain significantly elevated to that of mdx levels in transgenic mdx mice expressing nearly full-length dystrophin. Our results demonstrate that the microtubule-associated perturbations of mdx muscle are distinct, separable, and can vary independently from other parameters previously ascribed to dystrophin deficiency.


Asunto(s)
Distrofina/metabolismo , Microtúbulos/metabolismo , Utrofina/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Distrofina/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Unión Proteica/genética , Dominios Proteicos/genética , Sarcoglicanos/metabolismo , Sarcolema/metabolismo , Tubulina (Proteína)/metabolismo
5.
Am J Physiol Cell Physiol ; 308(11): C919-31, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25810257

RESUMEN

Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.


Asunto(s)
Forma BB de la Creatina-Quinasa/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/enzimología , Mioblastos/enzimología , Actinas/genética , Actinas/metabolismo , Empalme Alternativo , Animales , Fusión Celular , Forma BB de la Creatina-Quinasa/antagonistas & inhibidores , Forma BB de la Creatina-Quinasa/metabolismo , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Polimerizacion , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
6.
Genesis ; 49(3): 117-23, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21442720

RESUMEN

Antisense oligonucleotides are commonly employed to study the roles of genes in development. Although morpholino phosphorodiamidate oligonucleotides (morpholinos) are widely used to block translation or splicing of target gene products' the usefulness of other modifications in mediating RNase-H independent inhibition of gene activity in embryos has not been investigated. In this study, we investigated the extent that fully modified 2'-O-methyl oligonucleotides (2'-OMe oligos) that can function as translation inhibiting reagents in vivo, using Xenopus and zebrafish embryos. We find that oligos against Xenopus ß-catenin, wnt11, and bmp4 and against zebrafish chordin (chd), which can efficiently and specifically generate embryonic loss-of-function phenotypes comparable with morpholino injection and other methods. These results show that fully modified 2'-OMe oligos can function as RNase-H independent antisense reagents in vertebrate embryos and can thus serve as an alternative modification to morpholinos in some cases.


Asunto(s)
Oligorribonucleótidos Antisentido/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Morfolinas , Morfolinos , Oligorribonucleótidos Antisentido/farmacología , Fenotipo , Empalme del ARN , ARN Mensajero , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Nat Commun ; 9(1): 5104, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504831

RESUMEN

Force loss in skeletal muscle exposed to eccentric contraction is often attributed to injury. We show that EDL muscles from dystrophin-deficient mdx mice recover 65% of lost force within 120 min of eccentric contraction and exhibit minimal force loss when the interval between contractions is increased from 3 to 30 min. A proteomic screen of mdx muscle identified an 80% reduction in the antioxidant peroxiredoxin-2, likely due to proteolytic degradation following hyperoxidation by NADPH Oxidase 2. Eccentric contraction-induced force loss in mdx muscle was exacerbated by peroxiredoxin-2 ablation, and improved by peroxiredoxin-2 overexpression or myoglobin knockout. Finally, overexpression of γcyto- or ßcyto-actin protects mdx muscle from eccentric contraction-induced force loss by blocking NADPH Oxidase 2 through a mechanism dependent on cysteine 272 unique to cytoplasmic actins. Our data suggest that eccentric contraction-induced force loss may function as an adaptive circuit breaker that protects mdx muscle from injurious contractions.


Asunto(s)
Distrofina/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Peroxirredoxinas/metabolismo , Animales , Distrofina/deficiencia , Immunoblotting , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/genética , Peroxirredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA