Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Bioinformatics ; 25(1): 123, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515011

RESUMEN

BACKGROUND: Chromosome is one of the most fundamental part of cell biology where DNA holds the hierarchical information. DNA compacts its size by forming loops, and these regions house various protein particles, including CTCF, SMC3, H3 histone. Numerous sequencing methods, such as Hi-C, ChIP-seq, and Micro-C, have been developed to investigate these properties. Utilizing these data, scientists have developed a variety of loop prediction techniques that have greatly improved their methods for characterizing loop prediction and related aspects. RESULTS: In this study, we categorized 22 loop calling methods and conducted a comprehensive study of 11 of them. Additionally, we have provided detailed insights into the methodologies underlying these algorithms for loop detection, categorizing them into five distinct groups based on their fundamental approaches. Furthermore, we have included critical information such as resolution, input and output formats, and parameters. For this analysis, we utilized the GM12878 Hi-C datasets at 5 KB, 10 KB, 100 KB and 250 KB resolutions. Our evaluation criteria encompassed various factors, including memory usages, running time, sequencing depth, and recovery of protein-specific sites such as CTCF, H3K27ac, and RNAPII. CONCLUSION: This analysis offers insights into the loop detection processes of each method, along with the strengths and weaknesses of each, enabling readers to effectively choose suitable methods for their datasets. We evaluate the capabilities of these tools and introduce a novel Biological, Consistency, and Computational robustness score ( B C C score ) to measure their overall robustness ensuring a comprehensive evaluation of their performance.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , ADN , Secuenciación de Inmunoprecipitación de Cromatina , Algoritmos
2.
Curr Issues Mol Biol ; 45(3): 2549-2560, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36975537

RESUMEN

Understanding the three-dimensional (3D) structure of chromatin is invaluable for researching how it functions. One way to gather this information is the chromosome conformation capture (3C) technique and its follow-up technique Hi-C. Here, we present ParticleChromo3D+, a containerized web-based genome structure reconstruction server/tool that provides researchers with a portable and accurate tool for analyses. Additionally, ParticleChromo3D+ provides a more user-friendly way to access its capabilities via a graphical user interface (GUI). ParticleChromo3D+ can save time for researchers by increasing the accessibility of genome reconstruction, easing usage pain points, and offloading computational processing/installation time.

3.
Bioinformatics ; 38(9): 2414-2421, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35274679

RESUMEN

MOTIVATION: High throughput chromosome conformation capture (Hi-C) contact matrices are used to predict 3D chromatin structures in eukaryotic cells. High-resolution Hi-C data are less available than low-resolution Hi-C data due to sequencing costs but provide greater insight into the intricate details of 3D chromatin structures such as enhancer-promoter interactions and sub-domains. To provide a cost-effective solution to high-resolution Hi-C data collection, deep learning models are used to predict high-resolution Hi-C matrices from existing low-resolution matrices across multiple cell types. RESULTS: Here, we present two Cascading Residual Networks called HiCARN-1 and HiCARN-2, a convolutional neural network and a generative adversarial network, that use a novel framework of cascading connections throughout the network for Hi-C contact matrix prediction from low-resolution data. Shown by image evaluation and Hi-C reproducibility metrics, both HiCARN models, overall, outperform state-of-the-art Hi-C resolution enhancement algorithms in predictive accuracy for both human and mouse 1/16, 1/32, 1/64 and 1/100 downsampled high-resolution Hi-C data. Also, validation by extracting topologically associating domains, chromosome 3D structure and chromatin loop predictions from the enhanced data shows that HiCARN can proficiently reconstruct biologically significant regions. AVAILABILITY AND IMPLEMENTATION: HiCARN can be accessed and utilized as an open-sourced software at: https://github.com/OluwadareLab/HiCARN and is also available as a containerized application that can be run on any platform. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cromatina , Programas Informáticos , Humanos , Ratones , Animales , Reproducibilidad de los Resultados , Cromosomas , Conformación Molecular
4.
BMC Bioinformatics ; 23(1): 413, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203144

RESUMEN

BACKGROUND: Identifying splice site regions is an important step in the genomic DNA sequencing pipelines of biomedical and pharmaceutical research. Within this research purview, efficient and accurate splice site detection is highly desirable, and a variety of computational models have been developed toward this end. Neural network architectures have recently been shown to outperform classical machine learning approaches for the task of splice site prediction. Despite these advances, there is still considerable potential for improvement, especially regarding model prediction accuracy, and error rate. RESULTS: Given these deficits, we propose EnsembleSplice, an ensemble learning architecture made up of four (4) distinct convolutional neural networks (CNN) model architecture combination that outperform existing splice site detection methods in the experimental evaluation metrics considered including the accuracies and error rates. We trained and tested a variety of ensembles made up of CNNs and DNNs using the five-fold cross-validation method to identify the model that performed the best across the evaluation and diversity metrics. As a result, we developed our diverse and highly effective splice site (SS) detection model, which we evaluated using two (2) genomic Homo sapiens datasets and the Arabidopsis thaliana dataset. The results showed that for of the Homo sapiens EnsembleSplice achieved accuracies of 94.16% for one of the acceptor splice sites and 95.97% for donor splice sites, with an error rate for the same Homo sapiens dataset, 4.03% for the donor splice sites and 5.84% for the acceptor splice sites datasets. CONCLUSIONS: Our five-fold cross validation ensured the prediction accuracy of our models are consistent. For reproducibility, all the datasets used, models generated, and results in our work are publicly available in our GitHub repository here: https://github.com/OluwadareLab/EnsembleSplice.


Asunto(s)
Aprendizaje Profundo , Genómica , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Reproducibilidad de los Resultados
5.
BMC Bioinformatics ; 23(1): 463, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333787

RESUMEN

BACKGROUND: Chromosome conformation capture and its derivatives have provided substantial genetic data for understanding how chromatin self-organizes. These techniques have identified regions of high intrasequence interactions called topologically associated domains (TADs). TADs are structural and functional units that shape chromosomes and influence genomic expression. Many of these domains differ across cell development and can be impacted by diseases. Thus, analysis of the identified domains can provide insight into genome regulation. Hence, there are many approaches to identifying such domains across many cell lines. Despite the availability of multiple tools for TAD detection, TAD callers' speed, flexibility, result inconsistency, and reproducibility remain challenges in this research area. RESULTS: In this work, we developed a computational webserver called TADMaster that provides an analysis suite to directly evaluate the concordance level and robustness of two or more TAD data on any given genome region. The suite provides multiple visual and quantitative metrics to compare the identified domains' number, size, and various comparisons of shared domains, domain boundaries, and domain overlap. CONCLUSIONS: TADMaster is an efficient and easy-to-use web application that provides a set of consensus and unique TADs to inform the choice of TADs. It can be accessed at http://tadmaster.io and is also available as a containerized application that can be deployed and run locally on any platform or operating system.


Asunto(s)
Cromatina , Cromosomas , Reproducibilidad de los Resultados , Cromatina/genética , Genoma , Internet
6.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923653

RESUMEN

In this paper, we introduce a novel algorithm that aims to estimate chromosomes' structure from their Hi-C contact data, called Curriculum Based Chromosome Reconstruction (CBCR). Specifically, our method performs this three dimensional reconstruction using cis-chromosomal interactions from Hi-C data. CBCR takes intra-chromosomal Hi-C interaction frequencies as an input and outputs a set of xyz coordinates that estimate the chromosome's three dimensional structure in the form of a .pdb file. The algorithm relies on progressively training a distance-restraint-based algorithm with a strategy we refer to as curriculum learning. Curriculum learning divides the Hi-C data into classes based on contact frequency and progressively re-trains the distance-restraint algorithm based on the assumed importance of each curriculum in predicting the underlying chromosome structure. The distance-restraint algorithm relies on a modification of a Gaussian maximum likelihood function that scales probabilities based on the importance of features. We evaluate the performance of CBCR on both simulated and actual Hi-C data and perform validation on FISH, HiChIP, and ChIA-PET data as well. We also compare the performance of CBCR to several current methods. Our analysis shows that the use of curricula affects the rate of convergence of the optimization while decreasing the computational cost of our distance-restraint algorithm. Also, CBCR is more robust to increases in data resolution and therefore yields superior reconstruction accuracy of higher resolution data than all other methods in our comparison.


Asunto(s)
Cromosomas/genética , Aprendizaje Automático , Mapeo Cromosómico/métodos , Cromosomas/química , Humanos , Modelos Genéticos
7.
Bioinformatics ; 35(8): 1416-1418, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30215673

RESUMEN

MOTIVATION: Three-dimensional (3D) genome organization plays important functional roles in cells. User-friendly tools for reconstructing 3D genome models from chromosomal conformation capturing data and analyzing them are needed for the study of 3D genome organization. RESULTS: We built a comprehensive graphical tool (GenomeFlow) to facilitate the entire process of modeling and analysis of 3D genome organization. This process includes the mapping of Hi-C data to one-dimensional (1D) reference genomes, the generation, normalization and visualization of two-dimensional (2D) chromosomal contact maps, the reconstruction and the visualization of the 3D models of chromosome and genome, the analysis of 3D models and the integration of these models with functional genomics data. This graphical tool is the first of its kind in reconstructing, storing, analyzing and annotating 3D genome models. It can reconstruct 3D genome models from Hi-C data and visualize them in real-time. This tool also allows users to overlay gene annotation, gene expression data and genome methylation data on top of 3D genome models. AVAILABILITY AND IMPLEMENTATION: The source code and user manual: https://github.com/jianlin-cheng/GenomeFlow. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Cromosomas , Conformación Molecular
8.
Biol Proced Online ; 21: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049033

RESUMEN

Over the past decade, methods for predicting three-dimensional (3-D) chromosome and genome structures have proliferated. This has been primarily due to the development of high-throughput, next-generation chromosome conformation capture (3C) technologies, which have provided next-generation sequencing data about chromosome conformations in order to map the 3-D genome structure. The introduction of the Hi-C technique-a variant of the 3C method-has allowed researchers to extract the interaction frequency (IF) for all loci of a genome at high-throughput and at a genome-wide scale. In this review we describe, categorize, and compare the various methods developed to map chromosome and genome structures from 3C data-particularly Hi-C data. We summarize the improvements introduced by these methods, describe the approach used for method evaluation, and discuss how these advancements shape the future of genome structure construction.

9.
BMC Genomics ; 19(1): 161, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29471801

RESUMEN

BACKGROUND: The development of chromosomal conformation capture techniques, particularly, the Hi-C technique, has made the analysis and study of the spatial conformation of a genome an important topic in bioinformatics and computational biology. Aided by high-throughput next generation sequencing techniques, the Hi-C technique can generate genome-wide, large-scale intra- and inter-chromosomal interaction data capable of describing in details the spatial interactions within a genome. These data can be used to reconstruct 3D structures of chromosomes that can be used to study DNA replication, gene regulation, genome interaction, genome folding, and genome function. RESULTS: Here, we introduce a maximum likelihood algorithm called 3DMax to construct the 3D structure of a chromosome from Hi-C data. 3DMax employs a maximum likelihood approach to infer the 3D structures of a chromosome, while automatically re-estimating the conversion factor (α) for converting Interaction Frequency (IF) to distance. Our results show that the models generated by 3DMax from a simulated Hi-C dataset match the true models better than most of the existing methods. 3DMax is more robust to structural variability and noise. Compared on a real Hi-C dataset, 3DMax constructs chromosomal models that fit the data better than most methods, and it is faster than all other methods. The models reconstructed by 3DMax were consistent with fluorescent in situ hybridization (FISH) experiments and existing knowledge about the organization of human chromosomes, such as chromosome compartmentalization. CONCLUSIONS: 3DMax is an effective approach to reconstructing 3D chromosomal models. The results, and the models generated for the simulated and real Hi-C datasets are available here: http://sysbio.rnet.missouri.edu/bdm_download/3DMax/ . The source code is available here: https://github.com/BDM-Lab/3DMax . A short video demonstrating how to use 3DMax can be found here: https://youtu.be/ehQUFWoHwfo .


Asunto(s)
Algoritmos , Cromosomas Humanos , Biología Computacional/métodos , Genoma Humano , Imagenología Tridimensional/métodos , Conjuntos de Datos como Asunto , Humanos , Hibridación Fluorescente in Situ , Funciones de Verosimilitud , Linfocitos/metabolismo , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
10.
BMC Bioinformatics ; 18(1): 480, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137603

RESUMEN

BACKGROUND: With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. RESULTS: Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. CONCLUSIONS: As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .


Asunto(s)
Cromosomas/química , Aprendizaje Automático no Supervisado , Animales , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Inmunoprecipitación de Cromatina , Cromosomas/metabolismo , Análisis por Conglomerados , Elementos de Facilitación Genéticos , Genómica , Código de Histonas , Ratones , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
11.
BMC Bioinformatics ; 16: 338, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26493399

RESUMEN

BACKGROUND: The entire collection of genetic information resides within the chromosomes, which themselves reside within almost every cell nucleus of eukaryotic organisms. Each individual chromosome is found to have its own preferred three-dimensional (3D) structure independent of the other chromosomes. The structure of each chromosome plays vital roles in controlling certain genome operations, including gene interaction and gene regulation. As a result, knowing the structure of chromosomes assists in the understanding of how the genome functions. Fortunately, the 3D structure of chromosomes proves possible to construct through computational methods via contact data recorded from the chromosome. We developed a unique computational approach based on optimization procedures known as adaptation, simulated annealing, and genetic algorithm to construct 3D models of human chromosomes, using chromosomal contact data. RESULTS: Our models were evaluated using a percentage-based scoring function. Analysis of the scores of the final 3D models demonstrated their effective construction from our computational approach. Specifically, the models resulting from our approach yielded an average score of 80.41%, with a high of 91%, across models for all chromosomes of a normal human B-cell. Comparisons made with other methods affirmed the effectiveness of our strategy. Particularly, juxtaposition with models generated through the publicly available method Markov chain Monte Carlo 5C (MCMC5C) illustrated the outperformance of our approach, as seen through a higher average score for all chromosomes. Our methodology was further validated using two consistency checking techniques known as convergence testing and robustness checking, which both proved successful. CONCLUSIONS: The pursuit of constructing accurate 3D chromosomal structures is fueled by the benefits revealed by the findings as well as any possible future areas of study that arise. This motivation has led to the development of our computational methodology. The implementation of our approach proved effective in constructing 3D chromosome models and proved consistent with, and more effective than, some other methods thereby achieving our goal of creating a tool to help advance certain research efforts. The source code, test data, test results, and documentation of our method, Gen3D, are available at our sourceforge site at: http://sourceforge.net/projects/gen3d/.


Asunto(s)
Cromosomas Humanos/genética , Genoma/genética , Linfocitos B , Humanos , Modelos Teóricos , Alineación de Secuencia , Moldes Genéticos
12.
Comput Struct Biotechnol J ; 21: 812-836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36698967

RESUMEN

Chromosome conformation capture (3 C) is a method of measuring chromosome topology in terms of loci interaction. The Hi-C method is a derivative of 3 C that allows for genome-wide quantification of chromosome interaction. From such interaction data, it is possible to infer the three-dimensional (3D) structure of the underlying chromosome. In this paper, we developed a novel method, HiC-GNN, for predicting the 3D structures of chromosomes from Hi-C data. HiC-GNN is unique from other methods for chromosome structure prediction in that the models learned by HiC-GNN can be generalized to data that is distinct from the training data. This aspect of HiC-GNN allows models that were trained on one Hi-C contact map to be used for inference on entirely different maps. To the authors' knowledge, this generalizing capability is not present in any existing methods. HiC-GNN uses a node embedding algorithm and a graph neural network to predict the 3D coordinates of each genomic loci from the corresponding Hi-C contact data. Unlike other methods, our algorithm allows for the storage of pre-trained parameters, thus enabling prediction on data that is entirely different from the training data. We show that our method can accurately generalize a single model across Hi-C resolutions, multiple restriction enzymes, and multiple cell populations while maintaining reconstruction accuracy across three Hi-C datasets. Our algorithm outperforms the state-of-the-art methods in accuracy of prediction and runtime and introduces a novel method for 3D structure prediction from Hi-C data. All our source codes and data are available at https://github.com/OluwadareLab/HiC-GNN.

13.
Comput Struct Biotechnol J ; 21: 3210-3223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304005

RESUMEN

The identification of splice site, or segments of an RNA gene where noncoding and coding sequences are connected in the 5' and 3' directions, is an essential post-transcriptional step for the annotation of functional genes and is required for the study and analysis of biological function in eukaryotic organisms through protein production and gene expression. Splice site detection tools have been proposed for this purpose; however, the models of these tools have a specific use case and are inefficiently or typically untransferable between organisms. Here, we present CNNSplice, a set of deep convolutional neural network models for splice site prediction. Using the five-fold cross-validation model selection technique, we explore several models based on typical machine learning applications and propose five high-performing models to efficiently predict the true and false SS in balanced and imbalanced datasets. Our evaluation results indicate that CNNSplice's models achieve a better performance compared with existing methods across five organisms' datasets. In addition, our generality test shows CNNSplice's model ability to predict and annotate splice sites in new or poorly trained genome datasets indicating a broad application spectrum. CNNSplice demonstrates improved model prediction, interpretability, and generalizability on genomic datasets compared to existing splice site prediction tools. We have developed a web server for the CNNSplice algorithm which can be publicly accessed here: http://www.cnnsplice.online.

14.
BioData Min ; 15(1): 19, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131326

RESUMEN

BACKGROUND: The three-dimensional (3D) structure of chromatin has a massive effect on its function. Because of this, it is desirable to have an understanding of the 3D structural organization of chromatin. To gain greater insight into the spatial organization of chromosomes and genomes and the functions they perform, chromosome conformation capture (3C) techniques, particularly Hi-C, have been developed. The Hi-C technology is widely used and well-known because of its ability to profile interactions for all read pairs in an entire genome. The advent of Hi-C has greatly expanded our understanding of the 3D genome, genome folding, gene regulation and has enabled the development of many 3D chromosome structure reconstruction methods. RESULTS: Here, we propose a novel approach for 3D chromosome and genome structure reconstruction from Hi-C data using Particle Swarm Optimization (PSO) approach called ParticleChromo3D. This algorithm begins with a grouping of candidate solution locations for each chromosome bin, according to the particle swarm algorithm, and then iterates its position towards a global best candidate solution. While moving towards the optimal global solution, each candidate solution or particle uses its own local best information and a randomizer to choose its path. Using several metrics to validate our results, we show that ParticleChromo3D produces a robust and rigorous representation of the 3D structure for input Hi-C data. We evaluated our algorithm on simulated and real Hi-C data in this work. Our results show that ParticleChromo3D is more accurate than most of the existing algorithms for 3D structure reconstruction. CONCLUSIONS: Our results also show that constructed ParticleChromo3D structures are very consistent, hence indicating that it will always arrive at the global solution at every iteration. The source code for ParticleChromo3D, the simulated and real Hi-C datasets, and the models generated for these datasets are available here: https://github.com/OluwadareLab/ParticleChromo3D.

15.
Genes (Basel) ; 12(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34828363

RESUMEN

With the advent of Next Generation Sequencing and the Hi-C experiment, high quality genome-wide contact data are becoming increasingly available. These data represents an empirical measure of how a genome interacts inside the nucleus. Genome conformation is of particular interest as it has been experimentally shown to be a driving force for many genomic functions from regulation to transcription. Thus, the Three Dimensional-Genome Reconstruction Problem (3D-GRP) seeks to take Hi-C data and produces a complete physical genome structure as it appears in the nucleus for genomic analysis. We propose and develop a novel method to solve the Chromosome and Genome Reconstruction problem based on the Bat Algorithm (BA) which we called ChromeBat. We demonstrate on real Hi-C data that ChromeBat is capable of state-of-the-art performance. Additionally, the domain of Genome Reconstruction has been criticized for lacking algorithmic diversity, and the bio-inspired nature of ChromeBat contributes algorithmic diversity to the problem domain. ChromeBat is an effective approach for solving the Genome Reconstruction Problem.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Cromosomas/química , Imagenología Tridimensional/métodos , Algoritmos , Núcleo Celular/genética , Genómica/métodos , Conformación Molecular
16.
BMC Mol Cell Biol ; 21(1): 62, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811439

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

17.
BMC Mol Cell Biol ; 21(1): 60, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758136

RESUMEN

Advances in the study of chromosome conformation capture technologies, such as Hi-C technique - capable of capturing chromosomal interactions in a genome-wide scale - have led to the development of three-dimensional chromosome and genome structure reconstruction methods from Hi-C data. The three dimensional genome structure is important because it plays a role in a variety of important biological activities such as DNA replication, gene regulation, genome interaction, and gene expression. In recent years, numerous Hi-C datasets have been generated, and likewise, a number of genome structure construction algorithms have been developed.In this work, we outline the construction of a novel Genome Structure Database (GSDB) to create a comprehensive repository that contains 3D structures for Hi-C datasets constructed by a variety of 3D structure reconstruction tools. The GSDB contains over 50,000 structures from 12 state-of-the-art Hi-C data structure prediction algorithms for 32 Hi-C datasets.GSDB functions as a centralized collection of genome structures which will enable the exploration of the dynamic architectures of chromosomes and genomes for biomedical research. GSDB is accessible at http://sysbio.rnet.missouri.edu/3dgenome/GSDB.


Asunto(s)
Cromosomas/genética , Bases de Datos Genéticas , Genoma , Algoritmos , Conformación de Ácido Nucleico , Análisis de Componente Principal
18.
Sci Rep ; 9(1): 4971, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899036

RESUMEN

Eukaryotic chromosomes are often composed of components organized into multiple scales, such as nucleosomes, chromatin fibers, topologically associated domains (TAD), chromosome compartments, and chromosome territories. Therefore, reconstructing detailed 3D models of chromosomes in high resolution is useful for advancing genome research. However, the task of constructing quality high-resolution 3D models is still challenging with existing methods. Hence, we designed a hierarchical algorithm, called Hierarchical3DGenome, to reconstruct 3D chromosome models at high resolution (<=5 Kilobase (KB)). The algorithm first reconstructs high-resolution 3D models at TAD level. The TAD models are then assembled to form complete high-resolution chromosomal models. The assembly of TAD models is guided by a complete low-resolution chromosome model. The algorithm is successfully used to reconstruct 3D chromosome models at 5 KB resolution for the human B-cell (GM12878). These high-resolution models satisfy Hi-C chromosomal contacts well and are consistent with models built at lower (i.e. 1 MB) resolution, and with the data of fluorescent in situ hybridization experiments. The Java source code of Hierarchical3DGenome and its user manual are available here https://github.com/BDM-Lab/Hierarchical3DGenome .


Asunto(s)
Cromosomas Humanos/química , Imagenología Tridimensional , Modelos Moleculares , Algoritmos , Emparejamiento Base/genética , Línea Celular , Genoma , Humanos , Reproducibilidad de los Resultados , Estadísticas no Paramétricas
19.
Sci Rep ; 6: 20802, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26868282

RESUMEN

It has been shown that genome spatial structures largely affect both genome activity and DNA function. Knowing this, many researchers are currently attempting to accurately model genome structures. Despite these increased efforts there still exists a shortage of tools dedicated to visualizing the genome. Creating a tool that can accurately visualize the genome can aid researchers by highlighting structural relationships that may not be obvious when examining the sequence information alone. Here we present a desktop application, known as GMOL, designed to effectively visualize genome structures so that researchers may better analyze genomic data. GMOL was developed based upon our multi-scale approach that allows a user to scale between six separate levels within the genome. With GMOL, a user can choose any unit at any scale and scale it up or down to visualize its structure and retrieve corresponding genome sequences. Users can also interactively manipulate and measure the whole genome structure and extract static images and machine-readable data files in PDB format from the multi-scale structure. By using GMOL researchers will be able to better understand and analyze genome structure models and the impact their structural relations have on genome activity and DNA function.


Asunto(s)
Genoma Humano , Imagenología Tridimensional , Programas Informáticos , Cromosomas Humanos/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA