Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cardiovasc Pharmacol ; 61(4): 291-301, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23232840

RESUMEN

Epoxyeicosatrienoic acids, substrates for soluble epoxide hydrolase (sEH), exhibit vasodilatory and antihypertrophic activities. Inhibitors of sEH might therefore hold promise as heart failure therapeutics. We examined the ability of sEH inhibitors GSK2188931 and GSK2256294 to modulate cardiac hypertrophy, fibrosis, and function after transverse aortic constriction (TAC) in rats and mice. GSK2188931 administration was initiated in rats 1 day before TAC, whereas GSK2256294 treatment was initiated in mice 2 weeks after TAC. Four weeks later, cardiovascular function was assessed, plasma was collected for drug and sEH biomarker concentrations, and left ventricle was isolated for messenger RNA and histological analyses. In rats, although GSK2188931 prevented TAC-mediated increases in certain genes associated with hypertrophy and fibrosis (α-skeletal actin and connective tissue growth factor), the compound failed to attenuate TAC-induced increases in left ventricle mass, posterior wall thickness, end-diastolic volume and pressure, and perivascular fibrosis. Similarly, in mice, GSK2256294 did not reverse cardiac remodeling or systolic dysfunction induced by TAC. Both compounds increased the sEH substrate/product (leukotoxin/leukotoxin diol) ratio, indicating sEH inhibition. In summary, sEH inhibition does not prevent cardiac remodeling or dysfunction after TAC. Thus, targeting sEH seems to be insufficient for reducing pressure overload hypertrophy.


Asunto(s)
Aorta/efectos de los fármacos , Ciclohexilaminas/farmacología , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Piperidinas/farmacología , Triazinas/farmacología , Animales , Aorta/patología , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Constricción Patológica , Modelos Animales de Enfermedad , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Remodelación Ventricular/efectos de los fármacos
2.
Bioanalysis ; 15(19): 1169-1178, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37676652

RESUMEN

Background: Relatively large disulfide-linked polypeptides can serve as signaling molecules for a diverse array of biological processes and may be studied in animal models to investigate their function in vivo. The aim of this work was to develop an LC-MS/MS assay to measure a model peptide, INSL3, in rat plasma. Results: A dual enrichment strategy incorporating both protein precipitation and solid phase extraction was utilized to isolate INSL3 from rat plasma, followed by targeted LC-MS/MS detection. The method was able to measure full-length INSL3 (6.1 kDa) down to 0.2 ng/ml with acceptable accuracy and precision. Conclusion: The final assay was applied to support an exploratory pharmacokinetic study to evaluate steady-state concentrations of dosed INSL3 in rat plasma.

3.
Arterioscler Thromb Vasc Biol ; 30(2): 253-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19965779

RESUMEN

UNLABELLED: Purpose- This study assessed the pharmacological effect of a novel selective C-C chemokine receptor (CCR) 2 antagonist (GSK1344386B) on monocyte/macrophage infiltration into atherosclerotic plaque using magnetic resonance imaging (MRI) in an atherosclerotic mouse model. METHODS AND RESULTS: Apolipoprotein E(-/-) mice expressing human CCR2 were fed a Western diet (vehicle group) or a Western diet plus10 mg/kg per day of GSK1344386B (GSK1344386B group). After the baseline MRI, mice were implanted with osmotic pumps containing angiotensin II, 1000 ng/kg per minute, to accelerate lesion formation. After five weeks of angiotensin II administration, mice received ultrasmall superparamagnetic iron oxide, an MRI contrast agent for the assessment of monocyte/macrophage infiltration to the plaque, and underwent imaging. After imaging, mice were euthanized, and the heart and aorta were harvested for ex vivo MRI and histopathological examination. After 5 weeks of dietary dosing, there were no significant differences between groups in body or liver weight or plasma cholesterol concentrations. An in vivo MRI reflected a decrease in ultrasmall superparamagnetic iron oxide contrast agent uptake in the aortic arch of the GSK1344386B group (P<0.05). An ex vivo MRI of the aortic root also reflected decreased ultrasmall superparamagnetic iron oxide uptake in the GSK1344386B group and was verified by absolute iron analysis (P<0.05). Although there was no difference in aortic root lesion area between groups, there was a 30% reduction in macrophage area observed in the GSK1344386B group (P<0.05). CONCLUSIONS: An MRI was used to noninvasively assess the decreased macrophage content in the atherosclerotic plaque after selective CCR2 inhibition.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades de la Aorta/dietoterapia , Apolipoproteínas E/deficiencia , Aterosclerosis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Imagen por Resonancia Magnética , Naftiridinas/farmacología , Receptores CCR2/antagonistas & inhibidores , Angiotensina II/administración & dosificación , Animales , Antiinflamatorios/farmacocinética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Medios de Contraste , Dextranos , Grasas de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Óxido Ferrosoférrico , Humanos , Inmunohistoquímica , Bombas de Infusión Implantables , Macrófagos/inmunología , Macrófagos/patología , Nanopartículas de Magnetita , Ratones , Ratones Noqueados , Ratones Transgénicos , Naftiridinas/farmacocinética , Peritonitis/inmunología , Peritonitis/prevención & control , Receptores CCR2/genética , Receptores CCR2/metabolismo , Factores de Tiempo
4.
J Cardiovasc Pharmacol ; 56(2): 147-55, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20714241

RESUMEN

BACKGROUND: Hypoxia inducible factors (HIFs) are transcription factors that are regulated by HIF-prolyl 4-hydroxylases (PHDs) in response to changes in oxygen tension. Once activated, HIFs play an important role in angiogenesis, erythropoiesis, proliferation, cell survival, inflammation, and energy metabolism. We hypothesized that GSK360A, a novel orally active HIF-PHD inhibitor, could facilitate local and systemic HIF-1 alpha signaling and protect the failing heart after myocardial infarction (MI). METHODS AND RESULTS: GSK360A is a potent (nanomolar) inhibitor of HIF-PHDs (PHD1>PHD2 = PHD3) capable of activating the HIF-1 alpha pathway in a variety of cell types including neonatal rat ventricular myocytes and H9C2 cells. Male rats treated orally with GSK360A (30 mg x kg x d) had a sustained elevation in circulating levels of erythropoietin and hemoglobin and increased hemoxygenase-1 expression in the heart and skeletal muscle. In a rat model of established heart failure with systolic dysfunction induced by ligation of left anterior descending coronary artery, chronic treatment with GSK360A for 28 days prevented the progressive reduction in ejection fraction, ventricular dilation, and increased lung weight, which were observed in the vehicle-treated animals, for up to 3 months. In addition, the microvascular density in the periinfarct region was increased (>2-fold) in GSK360A-treated animals. Treatment was well tolerated (survival was 89% in the GSK360A group vs. 82% in the placebo group). CONCLUSIONS: Chronic post-myocardial infarction treatment with a selective HIF PHD inhibitor (GSK360A) exerts systemic and local effects by stabilizing HIF-1 alpha signaling and improves long-term ventricular function, remodeling, and vascularity in a model of established ventricular dysfunction. These results suggest that HIF-PHD inhibitors may be suitable for the treatment of post-MI remodeling and heart failure.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Glicina/análogos & derivados , Factor 1 Inducible por Hipoxia/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Quinolonas/farmacología , Remodelación Ventricular/efectos de los fármacos , Animales , Línea Celular , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Glicina/farmacología , Hemodinámica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley
5.
J Pharmacol Exp Ther ; 330(3): 964-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19556450

RESUMEN

The evidence is compelling for a role of inflammation in cardiovascular diseases; however, the chronic use of anti-inflammatory drugs for these indications has been disappointing. The recent study compares the effects of two anti-inflammatory agents [cyclooxygenase 2 (COX2) and p38 inhibitors] in a model of cardiovascular disease. The vascular, renal, and cardiac effects of 4-(4-methylsulfonylphenyl)-3-phenyl-5H-furan-2-one (rofecoxib; a COX2 inhibitor) and 6-{5-[(cyclopropylamino)carbonyl]-3-fluoro-2-methylphenyl}-N-(2,2-dimethylpropyl)-3-pyridinecarboxamide [GSK-AHAB, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor], were examined in the spontaneously hypertensive stroke-prone rat (SHR-SP). In SHR-SPs receiving a salt-fat diet (SFD), chronic treatment with GSK-AHAB significantly and dose-dependently improved survival, endothelial-dependent and -independent vascular relaxation, and indices of renal function, and it attenuated dyslipidemia, hypertension, cardiac remodeling, plasma renin activity (PRA), aldosterone, and interleukin-1beta (IL-1beta). In contrast, chronic treatment with a COX2-selective dose of rofecoxib exaggerated the harmful effects of the SFD, i.e., increasing vascular and renal dysfunction, dyslipidemia, hypertension, cardiac hypertrophy, PRA, aldosterone, and IL-1beta. The protective effects of a p38 MAPK inhibitor are clearly distinct from the deleterious effects of a selective COX2 inhibitor in the SHR-SP and suggest that anti-inflammatory agents can have differential effects in cardiovascular disease. The results also suggest a method for evaluating long-term cardiovascular efficacy and safety.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclopropanos/farmacología , Inhibidores Enzimáticos/farmacología , Lactonas/farmacología , Piridinas/farmacología , Sulfonas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Aldosterona/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/enzimología , Ciclooxigenasa 1/sangre , Ciclooxigenasa 2/sangre , Citocinas/antagonistas & inhibidores , Electrocardiografía/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Interleucina-1beta/sangre , Pruebas de Función Renal , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratas , Ratas Endogámicas SHR , Renina/sangre , Vasodilatación/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
6.
Arterioscler Thromb Vasc Biol ; 28(2): 265-71, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18162612

RESUMEN

OBJECTIVE: Ultrasmall superparamagnetic iron oxide (USPIO) contrast agents have been used for noninvasive MRI assessment of atherosclerotic plaque inflammation. The purpose of this study was to noninvasively evaluate USPIO uptake in aorta of apoE-/- mice and to determine the effects of Angiotensin II (Ang II) infusion and chronic antiinflammatory treatment with a p38 MAPK inhibitor on this uptake. METHODS AND RESULTS: ApoE-/- mice were administered saline or Ang II (1.44 mg/kg/d) for 21 days. In vivo MRI assessment of USPIO uptake in the aortic arch was observed in all animals. However, although the Ang II group had significantly higher absolute iron content (increased 103%, P<0.001) in the aortic arch compared with the saline group, the p38 MAPK inhibitor (SB-239063, 150 mg/kg/d) treatment group did not (increased 6%, NS). The in vivo MRI signal intensity was significantly correlated to the absolute iron content in the aortic arch. Histological evaluation of the aortic root lesion area showed colocalization of USPIO with macrophages and a reduction in USPIO but not macrophage content with SB-239063 treatment. CONCLUSIONS: The present study demonstrates that noninvasive assessment of USPIO uptake, as a marker for inflammation in murine atherosclerotic plaque, is feasible and that p38 MAPK inhibition attenuates the uptake of USPIO in aorta of Ang II-infused apoE-/- mice.


Asunto(s)
Aorta/patología , Óxido Ferrosoférrico , Imidazoles/farmacología , Angiografía por Resonancia Magnética/métodos , Nanopartículas del Metal , Pirimidinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Angiotensina II/administración & dosificación , Animales , Apolipoproteínas E/genética , Aterosclerosis/diagnóstico , Medios de Contraste/farmacocinética , Inhibidores Enzimáticos/farmacología , Estudios de Factibilidad , Óxido Ferrosoférrico/farmacocinética , Inflamación/diagnóstico , Masculino , Ratones , Ratones Noqueados , Vasoconstrictores/administración & dosificación
7.
J Am Heart Assoc ; 6(5)2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487390

RESUMEN

BACKGROUND: The amino acid response (AAR) is an evolutionarily conserved protective mechanism activated by amino acid deficiency through a key kinase, general control nonderepressible 2. In addition to mobilizing amino acids, the AAR broadly affects gene and protein expression in a variety of pathways and elicits antifibrotic, autophagic, and anti-inflammatory activities. However, little is known regarding its role in cardiac stress. Our aim was to investigate the effects of halofuginone, a prolyl-tRNA synthetase inhibitor, on the AAR pathway in cardiac fibroblasts, cardiomyocytes, and in mouse models of cardiac stress and failure. METHODS AND RESULTS: Consistent with its ability to inhibit prolyl-tRNA synthetase, halofuginone elicited a general control nonderepressible 2-dependent activation of the AAR pathway in cardiac fibroblasts as evidenced by activation of known AAR target genes, broad regulation of the transcriptome and proteome, and reversal by l-proline supplementation. Halofuginone was examined in 3 mouse models of cardiac stress: angiotensin II/phenylephrine, transverse aortic constriction, and acute ischemia reperfusion injury. It activated the AAR pathway in the heart, improved survival, pulmonary congestion, left ventricle remodeling/fibrosis, and left ventricular function, and rescued ischemic myocardium. In human cardiac fibroblasts, halofuginone profoundly reduced collagen deposition in a general control nonderepressible 2-dependent manner and suppressed the extracellular matrix proteome. In human induced pluripotent stem cell-derived cardiomyocytes, halofuginone blocked gene expression associated with endothelin-1-mediated activation of pathologic hypertrophy and restored autophagy in a general control nonderepressible 2/eIF2α-dependent manner. CONCLUSIONS: Halofuginone activated the AAR pathway in the heart and attenuated the structural and functional effects of cardiac stress.


Asunto(s)
Aminoácidos/metabolismo , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Insuficiencia Cardíaca/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Quinazolinonas/farmacología , Estrés Fisiológico , Aminoácidos/deficiencia , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
8.
Cardiovasc Res ; 66(1): 170-8, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15769460

RESUMEN

OBJECTIVE: Evidence suggests important relationships among chronic inflammatory processes, endothelial dysfunction, hypertension and target organ damage. The present study examined the effects of chronic treatment with an anti-inflammatory p38 mitogen-activated protein kinase (MAPK) inhibitor (SB-239063AN) in the N(omega)-nitro-l-arginine methyl ester-treated spontaneously hypertensive rat (SHR+l-NAME) model of severe hypertension and accelerated target organ damage. METHODS: SHRs were divided into control (n=16), l-NAME (n=26) and l-NAME+SB-239063AN (n=24) groups. l-NAME was delivered by the drinking water ad lib (50 mg/L) and SB-239063AN was administered by the diet (1200 ppm) for 4 weeks. Arterial blood pressure (telemetry) and target organ damage (kidney, heart, and vasculature) were examined. RESULTS: The introduction of l-NAME to the drinking water elicited a severe/sustained increase in blood pressure and significant morbidity and mortality. Chronic treatment with SB-239063AN had no effect on the initial blood pressure response (7 days) to l-NAME but attenuated subsequent increases in diastolic blood pressure and significantly reduced morbidity/mortality (42% vs. 5%, p<0.002). Renal dysfunction characterized by increased total protein and albumin excretion was apparent within 2 weeks in the SHR+l-NAME groups. Treatment with SB-239063AN delayed the onset of proteinuria and albuminuria. SB-239063AN treatment also significantly reduced l-NAME-induced interstitial fibrosis in the kidney and restrictive concentric hypertrophy in the left ventricle (end-diastolic volume 0.24+/-0.05 vs. 0.41+/-0.05 ml; p<0.05). Endothelial dysfunction was also not altered by SB-239063AN treatment (Rmax 49+/-6% vs. 45+/-9%). CONCLUSIONS: The results demonstrate that morbidity/mortality and accelerated target organ damage induced by inhibition of nitric oxide synthase in SHR was attenuated by treatment with a selective p38 MAPK inhibitor, SB-239063AN. The organ protection observed in the heart and kidney was not associated with preservation of endothelial function.


Asunto(s)
Hipertensión/tratamiento farmacológico , Imidazoles/uso terapéutico , Pirimidinas/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Ecocardiografía , Hipertensión/metabolismo , Hipertensión/patología , Técnicas In Vitro , Riñón/metabolismo , Riñón/patología , Masculino , Modelos Animales , Miocardio/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Ratas Endogámicas SHR , Resistencia Vascular
9.
Cardiovasc Res ; 62(3): 610-20, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15158154

RESUMEN

OBJECTIVE: Neointimal development following balloon angioplasty involves many factors including smooth muscle cell (SMC) migration and proliferation and extracellular matrix (ECM) remodeling. Further, in hypercholesterolemic (HC) conditions, there is an influx of macrophage foam cells (FCs) into the restenotic lesion, which also involves degradation of the basement membrane and surrounding ECM. The ECM remodeling that occurs during restenosis has been shown to be mediated by various proteases. Here we have investigated the role of cathepsin S (CatS), a cysteine protease, in this process. METHODS AND RESULTS: We have demonstrated by Taqman quantitative PCR, Western blot, and immunohistochemistry that CatS is up-regulated in restenotic lesions of HC rabbits following balloon injury of the iliofemoral artery. CatS mRNA expression was elevated 28-fold in balloon-injured vessels relative to uninjured contralateral vessels in HC rabbits 8 weeks post-angioplasty (p<0.05). CatS protein expression was detected within 1 day post-injury, persisted throughout the entire time course evaluated (60 days post-injury), and was co-localized with SMCs, macrophages, and FCs. In contrast, cystatin C (CysC), the endogenous inhibitor of cathepsins, was only minimally up-regulated following injury. CysC mRNA expression was elevated 3.5-fold in balloon-injured vessels relative to uninjured contralateral vessels in HC rabbits 8 weeks post-angioplasty (p<0.005), and up-regulation of protein expression was not detected until days 28 and 60 post-injury. Additional biochemical studies using recombinant rabbit CatS revealed that rabbit CatS digests laminin, fibronectin, and type I collagen. Further, CatS expression was evaluated in SMCs that were induced to migrate through a matrix-coated Boyden chamber upon platelet-derived growth factor (PDGF) stimulation. The addition of a selective CatS inhibitor reduced SMC migration dose-dependently with an 80% reduction in migration at 30 nM (p<0.005). Additionally, we have shown that CatS protein expression by human macrophages was increased upon stimulation with oxidized low density lipoprotein (ox-LDL), implying augmentation of CatS production during foam cell formation. CONCLUSION: Taken together, our results indicate an enhanced expression of CatS during neointima formation and it is associated with invading SMCs, macrophages, and FCs, highlighting the importance of CatS in the pathogenesis of restenosis.


Asunto(s)
Angioplastia de Balón/efectos adversos , Catepsinas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipercolesterolemia/metabolismo , Animales , Membrana Basal/metabolismo , Western Blotting/métodos , Movimiento Celular , Colágeno Tipo I/metabolismo , Constricción Patológica , Cistatina C , Cistatinas/metabolismo , Arteria Femoral/patología , Fibronectinas/metabolismo , Humanos , Hipercolesterolemia/patología , Inmunohistoquímica/métodos , Laminina/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/metabolismo , Masculino , Monocitos/metabolismo , Músculo Liso Vascular/patología , Reacción en Cadena de la Polimerasa/métodos , Conejos
10.
Front Pharmacol ; 3: 128, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22783192

RESUMEN

Soluble guanylate cyclase (sGC), the primary mediator of nitric oxide (NO) bioactivity, exists as reduced (NO-sensitive) and oxidized (NO-insensitive) forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to those of NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A [a low, non-depressor dose, and a high dose which lowered mean arterial pressure (MAP) by 5-10 mmHg] and those of equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in (1) Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R) and (2) spontaneously hypertensive stroke prone rats (SHR-SP) on a high salt/fat diet (HSFD). In I/R, neither compound reduced infarct size 24 h after reperfusion. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria, and mortality, caused left ventricular hypertrophy with preserved ejection fraction, and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552, but not that of GSK2181236A, decreased urine output, and improved survival. Conversely, the low dose of GSK2181236A, but not that of BAY 60-4552, attenuated the development of cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and improved survival. In addition to these effects, the high dose of BAY 60-4552 reduced urine output and microalbuminuria and attenuated the increase in MAP to a greater extent than did GSK2181236A. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP isolated aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to both GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the oxidative state of sGC is responsible for the vascular dysfunction. In summary, GSK2181236A and BAY 60-4552 provide partial benefit against hypertension-induced end-organ damage. The differential beneficial effects observed between these compounds could reflect tissue-specific changes in the oxidative state of sGC and might help direct the clinical development of these novel classes of therapeutic agents.

11.
J Magn Reson Imaging ; 30(2): 455-60, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19629967

RESUMEN

PURPOSE: To evaluate the use of an ultrasmall superparamagnetic iron oxide (USPIO) contrast agent as a marker for the detection of macrophage in a preclinical abdominal aortic aneurysm animal (AAA) model. MATERIALS AND METHODS: Osmotic pumps were implanted subcutaneously in apoE(-/-) mice for continuous infusion of Angiotensin II (Ang-II). Weekly bright-blood gradient echo scans were performed on the suprarenal abdominal aorta to evaluate aneurysm development. Once an AAA was detected, animals were administered 1000 mumol/kg of the USPIO contrast agent ferumoxtran-10 (Combidex) followed by in vivo scanning 24 h post-USPIO administration. After in vivo imaging, aortas were harvested for ex vivo imaging, histology, iron quantification, and gene expression analysis. RESULTS: Reduced signal intensity was evident in the post-USPIO transverse images of the abdominal aorta. The areas of reduced signal were primarily along the aneurysm shoulder and outer perianeurysm areas and corresponded to regions of macrophage infiltration and colocalized USPIO determination by means of histological staining. The absolute iron content measured significantly correlated to the area of signal reduction in the ex vivo images (r = 0.9; P < 0.01). In the AAA tissue, the macrophage-driven cytokine gene expression was up-regulated along with a matrix metalloproteinase known to mediate extracellular matrix breakdown in this disease model. CONCLUSION: These results demonstrate the feasibility of using an USPIO contrast agent as a surrogate for detecting the acute inflammatory process involved in the development of abdominal aneurysms.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico , Aneurisma de la Aorta Abdominal/metabolismo , Dextranos , Óxido Ferrosoférrico , Macrófagos/metabolismo , Imagen por Resonancia Magnética/métodos , Análisis de Varianza , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Apolipoproteínas E/deficiencia , Medios de Contraste/farmacocinética , Dextranos/farmacocinética , Modelos Animales de Enfermedad , Óxido Ferrosoférrico/farmacocinética , Procesamiento de Imagen Asistido por Computador , Inflamación/diagnóstico , Inflamación/metabolismo , Bombas de Infusión Implantables , Nanopartículas de Magnetita , Masculino , Ratones
12.
Circ Cardiovasc Imaging ; 1(3): 220-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19808546

RESUMEN

BACKGROUND: Hyperlipidimic mice administered angiotensin II have been used for the study of abdominal aortic aneurysms (AAAs). The purpose of this study was to examine the use of MRI for studying AAA development and for examining the effects of pharmacological intervention on AAA development in the apolipoprotein E-deficient mouse. METHODS AND RESULTS: Suprarenal aortic aneurysms were generated in apolipoprotein E-deficient mice administered angiotensin II (1000 ng/kg per min) for up to 28 days. In vivo MRI was performed serially (once weekly) to assess AAA development and rupture. Comparison of AAA size as measured by in vivo and ex vivo MRI resulted in excellent agreement (r=0.96, P<0.0001). In addition, MRI correlated with histology-derived AAA area assessment (in vivo versus histology: r=0.84, P<0.0001; ex vivo versus histology: r=0.89, P<0.0001). In a separate study, angiotensin II-administered apolipoprotein E-deficient mice were treated with doxycycline (broad-based matrix metalloproteinase inhibitor; 30 mg/kg per day for 28 days). MRI was able to noninvasively assess a reduced rate of AAA development (46% versus 71%, P<0.05), a decreased AAA area (2.56 versus 4.02 mm(2), P<0.01), and decreased incidence of rupture (43% versus 100%) in treated versus control animals. Inhibition of aorta matrix metalloproteinase 2/9 activity was observed in the treated animals. CONCLUSIONS: These results demonstrate the use of MRI to noninvasively and temporally assess AAA development on pharmacological intervention in this preclinical cardiovascular disease model.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico , Apolipoproteínas E/deficiencia , Imagen por Resonancia Magnética , Angiotensina II/farmacología , Animales , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Doxiciclina/farmacología , Masculino , Inhibidores de la Metaloproteinasa de la Matriz , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Noqueados
13.
Am J Physiol Endocrinol Metab ; 293(5): E1256-64, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17726146

RESUMEN

Peroxisome proliferator-activated receptor-delta (PPARdelta) activation results in upregulation of genes associated with skeletal muscle fatty acid oxidation and mitochondrial uncoupling. However, direct, noninvasive assessment of lipid metabolism and mitochondrial energy coupling in skeletal muscle following PPARdelta stimulation has not been examined. Therefore, in this study we examined the response of a selective PPARdelta agonist (GW610742X at 5 or 100 mg.kg(-1).day(-1) for 8 days) on skeletal-muscle lipid metabolism and mitochondrial coupling efficiency in rats by using in vivo magnetic resonance spectroscopy (MRS). There was a decrease in the intramyocellular lipid-to-total creatine ratio as assessed by in vivo (1)H-MRS in soleus and tibialis anterior muscles by day 7 (reduced by 49 and 46%, respectively; P < 0.01) at the high dose. Following the (1)H-MRS experiment (day 8), [1-(13)C]glucose was administered to conscious rats to assess metabolism in the soleus muscle. The relative fat-vs.-carbohydrate oxidation rate increased in a dose-dependent manner (increased by 52 and 93% in the 5 and 100 mg.kg(-1).day(-1) groups, respectively; P < 0.05). In separate experiments where mitochondrial coupling was assessed in vivo (day 7), (31)P-MRS was used to measure hindlimb ATP synthesis and (13)C-MRS was used to measure the hindlimb tricarboxylic acid cycle flux (V(tca)). There was no alteration, at either dose, in mitochondrial coupling efficiency measured as the ratio of unidirectional ATP synthesis flux to V(tca). Soleus muscle GLUT4 expression was decreased by twofold, whereas pyruvate dehydrogenase kinase 4, carnitine palmitoyl transferase 1a, and uncoupling protein 2 and 3 expression was increased by two- to threefold at the high dose (P < 0.05). In summary, these are the first noninvasive measurements illustrating a selective PPARdelta-mediated decrease in muscle lipid content that was consistent with a shift in metabolic substrate utilization from carbohydrate to lipid. However, the mitochondrial-energy coupling efficiency was not altered in the presence of increased uncoupling protein expression.


Asunto(s)
Isoindoles/farmacología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , PPAR delta/agonistas , Sulfonamidas/farmacología , Animales , Colesterol/sangre , Ciclo del Ácido Cítrico/efectos de los fármacos , Ácidos Grasos no Esterificados/sangre , Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Mitocondrias Musculares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , PPAR delta/farmacología , ARN/química , ARN/genética , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
14.
J Cardiovasc Pharmacol ; 50(1): 25-34, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17666912

RESUMEN

Previously, it was shown that selective deletion of peroxisome proliferator activated receptor delta (PPARdelta) in the heart resulted in a cardiac lipotoxicity, hypertrophy, and heart failure. The aim of the present study was to determine the effects of chronic and selective pharmacological activation of PPARdelta in a model of congestive heart failure. PPARdelta-specific agonist treatment (GW610742X at 30 and 100 mg/kg/day for 6-9 weeks) was initiated immediately postmyocardial infarction (MI) in Sprague-Dawley rats. Magnetic resonance imaging/spectroscopy was used to assess cardiac function and energetics. A 1-(13)C glucose clamp was performed to assess relative cardiac carbohydrate versus fat oxidation. Additionally, cardiac hemodynamics and reverse-transcription polymerase chain reaction gene expression analysis was performed. MI rats had significantly reduced left ventricle (LV) ejection fractions and whole heart phosphocreatine/adenosine triphosphate ratio compared with Sham animals (reduction of 43% and 14%, respectively). However, GW610742X treatment had no effect on either parameter. In contrast, the decrease in relative fat oxidation rate observed in both LV and right ventricle (RV) following MI (decrease of 58% and 54%, respectively) was normalized in a dose-dependent manner following treatment with GW610742X. These metabolic changes were associated with an increase in lipid transport/metabolism target gene expression (eg, CD36, CPT1, UCP3). Although there was no difference between groups in LV weight or infarct size measured upon necropsy, there was a dramatic reduction in RV hypertrophy and lung congestion (decrease of 22-48%, P<0.01) with treatment which was associated with a >7-fold decrease (P<0.05) in aterial natriuretic peptide gene expression in RV. Diuretic effects were not observed with GW610742X. In conclusion, chronic treatment with a selective PPARdelta agonist normalizes cardiac substrate metabolism and reduces RV hypertrophy and pulmonary congestion consistent with improvement in congestive heart failure.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Hipertrofia Ventricular Derecha/tratamiento farmacológico , PPAR delta/agonistas , Animales , Transporte Biológico , Diuresis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Metabolismo Energético , Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/fisiopatología , Lípidos/sangre , Espectroscopía de Resonancia Magnética , Masculino , Infarto del Miocardio/complicaciones , Oxidación-Reducción , PPAR delta/metabolismo , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/etiología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Función Ventricular Izquierda/efectos de los fármacos
15.
J Magn Reson Imaging ; 21(4): 432-42, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15779033

RESUMEN

PURPOSE: To compare atherosclerotic plaque uptake of a first (ferumoxtran-10) and second generation (ferumoxytol) ultrasmall superparamagnetic iron oxide (USPIO) contrast agent with different pharmacokinetic/pharmacodynamic properties. MATERIALS AND METHODS: New Zealand White rabbits maintained on a high cholesterol/fat diet were subjected to balloon injury to the abdominal aorta. Ferumoxtran-10 or ferumoxytol (500 micromol/kg) was administered at 2, 4, and 8 weeks following injury. In vivo magnetic resonance imaging (MRI) was performed immediately prior to, immediately after, and 6 days post-contrast administration. Ex vivo MRI, histologic, and inductively coupled plasma-mass spectrometry (ICP-MS) iron analyses were performed on the excised vessels. RESULTS: The blood pool clearance of ferumoxytol (t(1/2) < or = 6 hours) was more rapid than that of ferumoxtran-10 (t(1/2) < or = 48 hours). Decreased in vivo MRI signal intensity in the abdominal aorta was observed at 2, 4, and 8 weeks following injury with ferumoxtran-10, but not with ferumoxytol. Consistent with these observations, ex vivo MRI signal intensity was decreased in the ferumoxtran-10 vessels, and to a lesser degree in the ferumoxytol vs. control vessels (- contrast agent). In contrast, in vitro macrophage phagocytosis of USPIO was four to six fold greater with ferumoxytol than with ferumoxtran-10. Additionally, the absolute iron content correlated with ex vivo MRI signal intensity in all vessels (r = -0.86, P < 0.0001). CONCLUSIONS: These data suggest that the exposure period of atherosclerotic plaque to USPIO rather than the kinetics of the USPIO uptake by plaque alone is a critical criterion for experimental design of in vivo studies.


Asunto(s)
Arteriosclerosis/diagnóstico , Medios de Contraste/farmacocinética , Hierro/farmacocinética , Imagen por Resonancia Magnética , Óxidos/farmacocinética , Animales , Arteriosclerosis/metabolismo , Dextranos , Óxido Ferrosoférrico , Macrófagos/metabolismo , Macrófagos/patología , Nanopartículas de Magnetita , Masculino , Conejos
16.
J Pharmacol Exp Ther ; 307(3): 932-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14561851

RESUMEN

Numerous mediators, believed to play a role in endothelial dysfunction (e.g., neurohormones, cytokines, hypoxia, and stretch), have been shown to activate p38 mitogen-activated protein kinase (MAPK) in a variety of cell types. The purpose of the present study was to examine the regulation of p38 MAPK in endothelium and its role in endothelial dysfunction and salt sensitivity. In cultured human umbilical vein endothelial cells (HUVECs), tumor necrosis factor-alpha and lipopolysaccharide increased phosphorylation of p38 MAPK (P-p38 MAPK) and increased ICAM-1 expression. Preincubation with highly selective p38 MAPK inhibitors, 1-(1,3-dihydroxyprop-2-yl)-4-(4-fluorophenyl)-5-[2-phenoxypyrimidin-4-yl] imidazole (SB-239063AN) or SB-239063, dose dependently reduced intercellular adhesion molecule-1 expression in HUVECs. In spontaneously hypertensive-stroke prone rats (SHR-SP), P-p38 MAPK was localized by immunohistochemistry to the aortic endothelium and adventitia but was undetectable in aortae from normotensive rats. Introduction of a salt/fat diet (SFD) to the SHR-SP strain induced endothelial dysfunction (ex vivo vascular reactivity analysis), albuminuria, and an increase in blood pressure within 4 weeks. Chronic dietary dosing (approx. 100 mg/kg/day) with SB-239063AN inhibited the SFD diet-induced hypertension. In addition, delayed treatment also significantly improved survival and restored nitric oxide-mediated endothelium-dependent relaxation in SFD-SHR-SPs with established endothelial dysfunction. These results suggest an important role for p38 MAPK in endothelial inflammation and dysfunction as well as providing the first evidence for p38 MAPK-dependent hypertension.


Asunto(s)
Endotelio Vascular/patología , Inhibidores Enzimáticos/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipertensión/patología , Imidazoles/farmacología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Pirimidinas/farmacología , Albuminuria/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Western Blotting , Carbacol/farmacología , Moléculas de Adhesión Celular/biosíntesis , Humanos , Inmunohistoquímica , Masculino , Agonistas Muscarínicos/farmacología , Ratas , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Sobrevida , Telemetría , Proteínas Quinasas p38 Activadas por Mitógenos
17.
J Pharmacol Exp Ther ; 301(1): 15-20, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11907152

RESUMEN

The vascular response to mechanical injury involves inflammatory and fibroproliferative processes that result in the formation of neointima and vascular remodeling. The complex cellular interactions initiated by vascular injury are coordinated and modulated by the elaboration of cytokines and growth factors. The production and transduction of many of these mediators require phosphorylation of p38 mitogen-activated protein kinase (MAPK). In the present investigation, we examined the pattern and localization of p38 MAPK activation following balloon vascular injury. The effects of long-term and selective inhibition of p38 MAPK with SB 239063 (trans-1-(4-hydroxycyclohexyl)-4-(4-fluorophenyl)-5-[2-methoxy)pyrimidin-4-yl]imidazole) were also investigated in a model of vascular injury. Western blotting and immunohistochemical staining demonstrated that phospho-p38 MAPK was increased following balloon injury of the rabbit iliofemoral artery. The p38 MAPK activation was noted as early as 15 min after balloon injury and remained elevated for at least 28 days. Phospho-p38 MAPK immunoreactivity (IR) was localized primarily in regions of dedifferentiated, smooth muscle alpha-actin-positive cells in all lamina of the vessel wall. Phospho-p38 MAPK IR was not correlated with the localization of macrophage or proliferating cells (proliferating cell nuclear antigen; PCNA +). Long-term treatment (4 weeks) with SB 239063 (50 mg/kg/day, p.o.) reduced the vascular response to injury in the hypercholesterolemic rabbit. SB 239063 had no effect on platelet-derived growth factor (PDGF)-stimulated migration or proliferation of rabbit vascular smooth muscle cells (VSMCs) in culture. However, SB 239063 produced a concentration-dependent inhibition of transforming growth factor (TGF)-beta-stimulated fibronectin production in VSMCs. In conclusion, sustained activation of p38 MAPK plays an important role in the vascular response to injury and inhibition of p38 MAPK may represent a novel therapeutic approach to limit this response.


Asunto(s)
Vasos Sanguíneos/lesiones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Patológica/enzimología , Angioplastia de Balón , Animales , Vasos Sanguíneos/patología , Western Blotting , División Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Activación Enzimática/fisiología , Fibronectinas/biosíntesis , Hipercolesterolemia/sangre , Hipercolesterolemia/patología , Imidazoles/farmacología , Inmunohistoquímica , Masculino , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neovascularización Patológica/patología , Pirimidinas/farmacología , Conejos , Especificidad por Sustrato , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA