Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 17(10): e3000467, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31589602

RESUMEN

Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.


Asunto(s)
Epigénesis Genética , Histonas/genética , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Condicionamiento Físico Animal , Acetilación , Animales , Reprogramación Celular , Cromatina/química , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Glucólisis/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Musculares/citología , Músculo Esquelético/citología , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transducción de Señal , Receptor Relacionado con Estrógeno ERRalfa
2.
Proc Natl Acad Sci U S A ; 115(21): E4910-E4919, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735694

RESUMEN

Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1ß) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1ß. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1ß loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1ß-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.


Asunto(s)
Quistes/prevención & control , Metabolismo Energético , Epigenómica , Regulación de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/genética , Receptores de Estrógenos/genética , Insuficiencia Renal Crónica/prevención & control , Animales , Quistes/metabolismo , Quistes/patología , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 1-beta del Hepatocito/fisiología , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Regiones Promotoras Genéticas , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/fisiología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
3.
Nat Metab ; 6(2): 304-322, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38337096

RESUMEN

Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.


Asunto(s)
Proteostasis , Proteínas Proto-Oncogénicas c-bcl-6 , Factores de Transcripción , Animales , Ratones , Inmunoprecipitación de Cromatina , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética
4.
Sci Rep ; 11(1): 430, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432099

RESUMEN

Plasminogen activator inhibitor 1 (PAI-1) is a functional biomarker of the metabolic syndrome. Previous studies have demonstrated that PAI-1 is a mechanistic contributor to several elements of the syndrome, including obesity, hypertension and insulin resistance. Here we show that PAI-1 is also a critical regulator of hepatic lipid metabolism. RNA sequencing revealed that PAI-1 directly regulates the transcriptional expression of numerous genes involved in mammalian lipid homeostasis, including PCSK9 and FGF21. Pharmacologic or genetic reductions in plasma PAI-1 activity ameliorates hyperlipidemia in vivo. These experimental findings are complemented with the observation that genetic deficiency of PAI-1 is associated with reduced plasma PCSK9 levels in humans. Taken together, our findings identify PAI-1 as a novel contributor to mammalian lipid metabolism and provides a fundamental mechanistic insight into the pathogenesis of one of the most pervasive medical problems worldwide.


Asunto(s)
Dislipidemias/genética , Hígado Graso/genética , Inhibidor 1 de Activador Plasminogénico/fisiología , Animales , Células Cultivadas , Estudios de Cohortes , Dislipidemias/metabolismo , Hígado Graso/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/genética , Células Hep G2 , Humanos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proproteína Convertasa 9/genética
5.
Cell Rep ; 34(13): 108927, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789109

RESUMEN

Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in distal enhancers and long-range histone modifications confined to chromatin contact domains that constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and advantage of DeCET on multiple publicly available epigenomic datasets representing different cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our understanding of disease states, cellular development, and differentiation, thereby facilitating future therapeutic, diagnostic, and prognostic strategies.


Asunto(s)
Epigenoma , Leiomioma/clasificación , Leiomioma/genética , Neoplasias Uterinas/clasificación , Neoplasias Uterinas/genética , Diferenciación Celular/genética , Cromatina/metabolismo , Análisis por Conglomerados , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Homeobox , Células HEK293 , Humanos , Leiomioma/patología , Miometrio/patología , Motivos de Nucleótidos/genética , Factores de Transcripción/metabolismo , Neoplasias Uterinas/patología
6.
Elife ; 82019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30983568

RESUMEN

Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARα to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high-fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARα-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to shared cis-regulatory regions dictates hepatic lipid handling.


Asunto(s)
Ayuno , Hígado Graso/fisiopatología , Regulación de la Expresión Génica , Hígado/fisiología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Eliminación de Gen , Metabolismo de los Lípidos , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/deficiencia
7.
Cell Rep ; 25(12): 3283-3298.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566857

RESUMEN

Accumulation of visceral adiposity is directly linked to the morbidity of obesity, while subcutaneous body fat is considered more benign. We have identified an unexpected role for B cell lymphoma 6 (BCL6), a critical regulator of immunity, in the developmental expansion of subcutaneous adipose tissue. In adipocyte-specific knockout mice (Bcl6AKO), we found that Bcl6 deletion results in strikingly increased inguinal, but not perigonadal, adipocyte size and tissue mass in addition to marked insulin sensitivity. Genome-wide RNA expression and DNA binding analyses revealed that BCL6 controls gene networks involved in cell growth and fatty acid biosynthesis. Using deuterium label incorporation and comprehensive adipokine and lipid profiling, we discovered that ablation of adipocyte Bcl6 enhances subcutaneous adipocyte lipogenesis, increases levels of adiponectin and fatty acid esters of hydroxy fatty acids (FAHFAs), and prevents steatosis. Thus, our studies identify BCL6 as a negative regulator of subcutaneous adipose tissue expansion and metabolic health.


Asunto(s)
Resistencia a la Insulina , Obesidad/genética , Obesidad/patología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Transcripción Genética , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adiponectina/sangre , Tejido Adiposo Pardo/metabolismo , Adiposidad , Animales , Diferenciación Celular/genética , ADN/metabolismo , Dieta Alta en Grasa , Hígado Graso/patología , Feto/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Insulina/metabolismo , Resistencia a la Insulina/genética , Lípidos/biosíntesis , Lipogénesis/genética , Masculino , Ratones , Ratones Noqueados , Obesidad/sangre , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6/deficiencia , Transducción de Señal , Grasa Subcutánea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA