Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209127

RESUMEN

Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.


Asunto(s)
Biofortificación/métodos , Productos Agrícolas/química , Micronutrientes/análisis , Factores de Edad , Agricultura , Animales , Biotecnología , Fertilizantes , Seguridad Alimentaria , Alimentos Fortificados , Salud Global , Tecnología Química Verde , Humanos , Desnutrición/epidemiología , Desnutrición/etiología , Minerales/análisis , Minerales/química , Nanotecnología , Valor Nutritivo , Fitomejoramiento , Suelo/química
2.
PLoS One ; 17(2): e0258438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35148326

RESUMEN

The pollution is hot issue of current era in world and the current study was carried to explore impacts of brickkilns' emanations on physiochemical properties of agricultural lands from District Bhimber of Azad Jammu and Kashmir (AJK) Pakistan. In this research, various edaphic characteristics: pH, soil organic matter, organic carbon, water holding capacity, cation exchange capacity and heavy metal contamination in soils nearby of brickkilns were determined. The pH of soil ranged from 5.55 to 7.50, soil organic matter was 0.35-0.90% and organic carbon content was 0.65-1.40%. The water holding capacity ranged from 2.10 to 3.20 mgL-1 and carbon exchange capacity was 1250 to 4202 meq/100g. The contamination profile of heavy metal depicted that Pb showed highest conc. 0.065 mg/g followed by Co (0.053 mg/g) and Ni with 0.52 mg/g in the soil. Pb and Cr had high conc. in soil samples around brickkilns due to burning of coal and rubber tyres as fuel. The conc. of sulphate and nitrate ranged from 0.90±0.50 mol L-1 to 4.25±0.65 mol L-1 and 2.30±0.50 mol L-1 to 6.55±0.25 mol L-1, respectively. The fertility of agriculture lands was depicted that edaphic properties were directly related while nutritive features were inversely commensurate to distance from brickkilns. The research proved that emanations of brickkilns causes severe impact on quality of agriculture land, plant growth and its yield. Hence, reclamation measures should be taken to mitigate and/or eradicate nuisance of brickkilns emanations by using environmental friendly strategies.


Asunto(s)
Contaminación Ambiental/análisis , Suelo/química , Agricultura , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Metales Pesados/análisis , Pakistán , Contaminantes del Suelo/análisis
3.
Saudi J Biol Sci ; 28(6): 3186-3192, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34121854

RESUMEN

The dusky cotton bug (Oxycarenus laetus, KIRBY) a pest of several crops. The effects of winter and summer on the biology and morphology was investigated. The sampled eggs of dusky cotton bug (DCB) were kept under controlled environment for biological and morphological investigations. In winter, the mating duration of DCB was observed longer significantly (74.2 days), egg development period (3.93 days), an egg laying period (3.6 days) and hatching period (6.66 days) noted longer in winter season. Interestingly, average number of hatched egg (16.8 days) observed significantly higher in summer and the percentage of the hatching of eggs (81.95%) were also observed higher in summer as compare to winter. Whereas, the longevity of all nymph stages in winter longer days as compare to summer nymph stages. Moreover, differences were also observed between male and female development days between winter and summer. In the winter, female DCB development was suggestively higher as compare to summer (24 days). Whereas, the developmental days were noted considerably more in winter for males as compare to summer (14.93 days). On other hand, for morphological parameters, no differences were observed between winter and summer population of DCB.

4.
Microorganisms ; 10(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35056500

RESUMEN

Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.

5.
Saudi J Biol Sci ; 28(11): 6209-6217, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34759741

RESUMEN

Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha-1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha-1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (P N), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (g s ), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha-1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha-1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA