Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 128(14): 2815-2824, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38551990

RESUMEN

Kinetics of reactions between SO2 and CH3CHOO Criegee intermediate conformers have been measured at temperatures between 242 and 353 K and pressures between 10 and 600 Torr using laser flash photolysis of CH3CHI2/O2/N2/SO2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy. The kinetics of syn-CH3CHOO + SO2 are pressure-dependent and exhibit a negative temperature dependence, with the observed pressure dependence reconciling apparent discrepancies between previous measurements performed at ∼298 K. Results indicate a rate coefficient of (4.80 ± 0.46) × 10-11 cm3 s-1 for the reaction of syn-CH3CHOO with SO2 at 298 K and 760 Torr. In contrast to the behavior of the syn-conformer, the kinetics of anti-CH3CHOO + SO2 display no significant dependence on temperature or pressure over the ranges investigated, with a mean rate coefficient of (1.18 ± 0.21) × 10-10 cm3 s-1 over all conditions studied in this work. Results indicate that the reaction of syn-CH3CHOO with SO2 competes with unimolecular decomposition and reaction with water vapor in areas with high SO2 concentration and low humidity, particularly at lower temperatures.

2.
J Phys Chem A ; 128(25): 5028-5040, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38885649

RESUMEN

Methyl esters are an important component of combustion and atmospheric systems. Reaction with the OH radical plays an important role in the removal of the simplest methyl ester, methyl formate (MF, CH3OCHO). In this paper, the overall rate coefficients for the reactions of OH and OD with MF isotopologues, studied under pseudo-first-order conditions, are reported using two different laser flash photolysis systems with the decay of OH monitored by laser-induced fluorescence. The room-temperature rate coefficient for OH + MF, (1.95 ± 0.34) × 10-13 cm3 molecule-1 s-1, is in good agreement with the literature. The rate coefficient exhibits curved Arrhenius behavior, and our results bridge the gap between previous low-temperature and shock tube studies. In combination with the literature, the rate coefficient for the reaction of OH with MF between 230 and 1400 K can be parametrized as kOH+MF = (3.2 × 10-13) × (T/300 K)2.3 × exp(-141.4 K/T) cm3 molecule-1 s-1 with an overall estimated uncertainty of ∼30%. The reactions of OD with MF isotopologues show a small enhancement (inverse secondary isotope effect) compared to the respective OH reactions. The reaction of OH/OD with MF shows a normal primary isotope effect, a decrease in the rate coefficient when MF is partially or fully deuterated. Experimental studies have been supported by ab initio calculations at the CCSD(T)-F12/aug-cc-pVTZ//M06-2X/6-31+G** level of theory. The calculated, zero-point-corrected, barrier heights for abstraction at the methyl and formate sites are 1.3 and 6.0 kJ mol-1, respectively, and the ab initio predictions of kinetic isotope effects are in agreement with experiment. Fitting the experimental isotopologue data refines these barriers to 0.9 ± 0.6 and 4.1 ± 0.9 kJ mol-1. The branching ratio is approximately 50:50 at 300 K. Between 300 and 500 K, abstraction via the higher-energy, higher-entropy formate transition state becomes more favored (60:40). However, experiment and calculations suggest that as the temperature increases further, with higher energy, less constrained conformers of the methyl transition state become more significant. The implications of the experimental and theoretical results for the mechanisms of MF atmospheric oxidation and low-temperature combustion are discussed.

3.
J Phys Chem A ; 127(10): 2367-2375, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36857400

RESUMEN

The reaction of CH radicals with H2 has been studied by the use of laser flash photolysis, probing CH decays under pseudo-first-order conditions using laser-induced fluorescence (LIF) over the temperature range 298-748 K at pressures of ∼5-100 Torr. Careful data analysis was required to separate the CH LIF signal at ∼428 nm from broad background fluorescence, and this interference increased with temperature. We believe that this interference may have been the source of anomalous pressure behavior reported previously in the literature (Brownsword, R. A.; J. Chem. Phys. 1997, 106, 7662-7677). The rate coefficient k1 shows complex behavior: at low pressures, the main route for the CH3* formed from the insertion of CH into H2 is the formation of 3CH2 + H, and as the pressure is increased, CH3* is increasingly stabilized to CH3. The kinetic data on CH + H2 have been combined with experimental shock tube data on methyl decomposition and literature thermochemistry within a master equation program to precisely determine the rate coefficient of the reverse reaction, 3CH2 + H → CH + H2. The resulting parametrization is kCH2+H(T) = (1.69 ± 0.11) × 10-10 × (T/298 K)(0.05±0.010) cm3 molecule-1 s-1, where the errors are 1σ.

4.
J Phys Chem A ; 126(42): 7639-7649, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36227778

RESUMEN

The fluorescence assay by gas expansion (FAGE) method for the measurement of the methyl peroxy radical (CH3O2) using the conversion of CH3O2 into methoxy radicals (CH3O) by excess NO, followed by the detection of CH3O, has been used to study the kinetics of the self-reaction of CH3O2. Fourier transform infrared (FTIR) spectroscopy has been employed to determine the products methanol and formaldehyde of the self-reaction. The kinetics and product studies were performed in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) in the temperature range 268-344 K at 1000 mbar of air. The product measurements were used to determine the branching ratio of the reaction channel forming methoxy radicals, rCH3O. A value of 0.34 ± 0.05 (errors at 2σ level) was determined for rCH3O at 295 K. The temperature dependence of rCH3O can be parametrized as rCH3O = 1/{1 + [exp(600 ± 85)/T]/(3.9 ± 1.1)}. An overall rate coefficient of the self-reaction of (2.0 ± 0.9) × 10-13 cm3 molecule-1 s-1 at 295 K was obtained by the kinetic analysis of the observed second-order decays of CH3O2. The temperature dependence of the overall rate coefficient can be characterized by koverall = (9.1 ± 5.3) × 10-14 × exp((252 ± 174)/T) cm3 molecule-1 s-1. The found values of koverall in the range 268-344 K are ∼40% lower than the values calculated using the recommendations of the Jet Propulsion Laboratory and IUPAC, which are based on the previous studies, all of them utilizing time-resolved UV-absorption spectroscopy to monitor CH3O2. A modeling study using a complex chemical mechanism to describe the reaction system showed that unaccounted secondary chemistry involving Cl species increased the values of koverall in the previous studies using flash photolysis to initiate the chemistry. The overestimation of the koverall values by the kinetic studies using molecular modulation to generate CH3O2 can be rationalized by a combination of underestimated optical absorbance of CH3O2 and unaccounted CH3O2 losses to the walls of the reaction cells employed.

5.
J Phys Chem A ; 126(39): 6984-6994, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146923

RESUMEN

The kinetics of the unimolecular decomposition of the stabilized Criegee intermediate syn-CH3CHOO has been investigated at temperatures between 297 and 331 K and pressures between 12 and 300 Torr using laser flash photolysis of CH3CHI2/O2/N2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy. Fits to experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicate that the barrier height to decomposition is 67.2 ± 1.3 kJ mol-1 and that there is a strong tunneling component to the decomposition reaction under atmospheric conditions. At 298 K and 760 Torr, MESMER simulations indicate a rate coefficient of 150-81+176 s-1 when tunneling effects are included but only 5-2+3 s-1 when tunneling is not considered in the model. MESMER simulations were also performed for the unimolecular isomerization of the stabilized Criegee intermediate anti-CH3CHOO to methyldioxirane, indicating a rate coefficient of 54-21+34 s-1 at 298 K and 760 Torr, which is not impacted by tunneling effects. Expressions to describe the unimolecular kinetics of syn- and anti-CH3CHOO are provided for use in atmospheric models, and atmospheric implications are discussed.

6.
Phys Chem Chem Phys ; 23(35): 19415-19423, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34494054

RESUMEN

The kinetics of the gas phase reaction of the Criegee intermediate CH2OO with SO2 have been studied as a function of temperature in the range 223-344 K at 85 Torr using flash photolysis of CH2I2/O2/SO2/N2 mixtures at 248 nm coupled to time-resolved broadband UV absorption spectroscopy. Measurements were performed under pseudo-first-order conditions with respect to SO2, revealing a negative temperature dependence. Analysis of experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicates that the observed temperature dependence, combined with the reported lack of a pressure dependence in the range 1.5-760 Torr, can be described by a reaction mechanism consisting of the formation of a pre-reaction complex leading to a cyclic secondary ozonide which subsequently decomposes to produce HCHO + SO3. The temperature dependence can be characterised by kCH2OO+SO2 = (3.72 ± 0.13) × 10-11 (T/298)(-2.05±0.38) cm3 molecule-1 s-1. The observed negative temperature dependence for the title reaction in conjunction with the decrease in water dimer (the main competitor for the Criegee intermediate) concentration at lower temperatures means that Criegee intermediate chemistry can play an enhanced role in SO2 oxidation in the atmosphere at lower temperatures.

7.
Phys Chem Chem Phys ; 22(17): 9448-9459, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32314758

RESUMEN

The UV absorption cross-sections of the Criegee intermediate CH2OO, and kinetics of the CH2OO self-reaction and the reaction of CH2OO with I are reported as a function of pressure at 298 K. Measurements were made using pulsed laser flash photolysis of CH2I2/O2/N2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy at pressures between 6 and 300 Torr. Results give a peak absorption cross-section of (1.37 ± 0.29) × 10-17 cm2 at ∼340 nm and a rate coefficient for the CH2OO self-reaction of (8.0 ± 1.1) × 10-11 cm3 s-1, with no significant pressure dependence of the absorption cross-sections or the self-reaction kinetics over the range investigated. The rate coefficient for the reaction between CH2OO and I demonstrates pressure dependence over the range investigated, with a Lindemann fit giving k0 = (4.4 ± 1.0) × 10-29 cm6 s-1 and k∞ = (6.7 ± 0.6) × 10-11 cm3 s-1. The origins of IO in the system have been investigated, the implications of which are discussed.

8.
J Phys Chem A ; 124(31): 6287-6293, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32667796

RESUMEN

The kinetics of the gas phase reactions of the Criegee intermediate CH2OO with O3 and IO have been studied at 296 K and 300 Torr through simultaneous measurements of CH2OO, the CH2OO precursor (CH2I2), O3, and IO using flash photolysis of CH2I2/O2/O3/N2 mixtures at 248 nm coupled to time-resolved broadband UV absorption spectroscopy. Experiments were performed under pseudo-first-order conditions with respect to O3, with the rate coefficients for reactions of CH2OO with O3 and IO obtained by fitting to the observed decays of CH2OO using a model constrained to the measured concentrations of IO. Fits were performed globally, with the ratio between the initial concentration of O3 and the average concentration of IO varying in the range 30-700, and gave kCH2OO+O3 = (3.6 ± 0.8) × 10-13 cm3 molecule-1 s-1 and kCH2OO+IO = (7.6 ± 1.4) × 10-11 cm3 molecule-1 s-1 (where the errors are at the 2σ level). The magnitude of kCH2OO+O3 has a significant effect on the steady state concentration of CH2OO in chamber studies. Atmospheric implications of the results are discussed.

9.
J Phys Chem A ; 123(47): 10254-10262, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31661276

RESUMEN

QOOH radicals are key species in autoignition, produced by internal isomerizations of RO2 radicals, and are central to chain branching reactions in low-temperature combustion. The kinetics of QOOH radical decomposition and reaction with O2 have been determined as a function of temperature and pressure, using observations of OH radical production and decay following H-atom abstraction from t-butyl hydroperoxide ((CH3)3COOH) by Cl atoms to produce QOOH (CH2(CH3)2COOH) radicals. The kinetics of QOOH decomposition have been investigated as a function of temperature (251-298 K) and pressure (10-350 Torr) in helium and nitrogen bath gases, and those of the reaction between QOOH and O2 have been investigated as a function of temperature (251-304 K) and pressure (10-100 Torr) in He and N2. Decomposition of the QOOH radical was observed to display temperature and pressure dependence, with a barrier height for the decomposition of (44.7 ± 4.0) kJ mol-1 determined by master equation fitting to the experimental data. The rate coefficient for the reaction between QOOH and O2 was determined to be (5.6 ± 1.7) × 10-13 cm3 s-1 at 298 K, with no significant dependence on pressure, and can be described by the Arrhenius parameters A = (7.3 ± 6.8) × 10-14 cm3 s-1 and Ea = -(5.4 ± 2.1) kJ mol-1 in the temperature range of 251-304 K. This work represents the first measurements of any QOOH radical kinetics as a function of temperature and pressure.

10.
Environ Sci Technol ; 48(16): 9935-42, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25072999

RESUMEN

The branching ratios for the reaction of the OH radical with the primary and secondary alkylamines: methylamine (MA), dimethylamine (DMA), and ethylamine (EA), have been determined using the technique of pulsed laser photolysis-laser-induced fluorescence. Titration of the carbon-centered radical, formed following the initial OH abstraction, with oxygen to give HO2 and an imine, followed by conversion of HO2 to OH by reaction with NO, resulted in biexponential OH decay traces on a millisecond time scale. Analysis of the biexponential curves gave the HO2 yield, which equaled the branching ratio for abstraction at αC-H position, r(αC-H). The technique was validated by reproducing known branching ratios for OH abstraction for methanol and ethanol. For the amines studied in this work (all at 298 K): r(αC-H,MA) = 0.76 ± 0.08, r(αC-H,DMA) = 0.59 ± 0.07, and r(αC-H,EA) = 0.49 ± 0.06 where the errors are a combination in quadrature of statistical errors at the 2σ level and an estimated 10% systematic error. The branching ratios r(αC-H) for OH reacting with (CH3)2NH and CH3CH2NH2 are in agreement with those obtained for the OD reaction with (CH3)2ND (d-DMA) and CH3CH2ND2 (d-EA): r(αC-H,d-DMA) = 0.71 ± 0.12 and r(αC-H,d-EA) = 0.54 ± 0.07. A master equation analysis (using the MESMER package) based on potential energy surfaces from G4 theory was used to demonstrate that the experimental determinations are unaffected by formation of stabilized peroxy radicals and to estimate atmospheric pressure yields. The branching ratio for imine formation through the reaction of O2 with α carbon-centered radicals at 1 atm of N2 are estimated as r(CH2NH2) = 0.79 ± 0.15, r(CH2NHCH3) = 0.72 ± 0.19, and r(CH3CHNH2) = 0.50 ± 0.18. The implications of this work on the potential formation of nitrosamines and nitramines are briefly discussed.


Asunto(s)
Dimetilaminas/análisis , Etilaminas/análisis , Radical Hidroxilo/química , Metilaminas/análisis , Atmósfera , Etanol/análisis , Cinética , Metanol/análisis , Óxido Nítrico/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA