Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Malar J ; 21(1): 235, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948910

RESUMEN

BACKGROUND: Evolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodium parasites. These forces may favour the introduction of species genotypes that adapt to new breeding habitats, potentially having an impact on malaria transmission. Thioester-containing protein 1 (TEP1) of Anopheles gambiae complex plays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms among populations of An. gambiae sensu lato (s.l.) in western Kenya. METHODS: Anopheles gambiae adult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectively from Homa Bay, Kakamega, Bungoma, and Kisumu counties between 2017 and 2020. Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR. TEP1 alleles were determined in 627 anopheles mosquitoes using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of the alleles was sequenced. RESULTS: Two TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively both in Anopheles gambiae and Anopheles arabiensis. There was no significant difference detected among the populations and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST = 0.019) across all sites corresponded to an effective migration index (Nm = 12.571) and low Nei's genetic distance values (< 0.500) among the subpopulation. The comparative fixation index values revealed minimal genetic differentiation between species and high levels of gene flow among populations. CONCLUSION: Genotyping TEP1 has identified two common TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) in An. gambiae s.l. The TEP1 allele genetic diversity and population structure are low in western Kenya.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/parasitología , Genotipo , Kenia/epidemiología , Larva , Malaria/parasitología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología
2.
Malar J ; 21(1): 272, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153552

RESUMEN

BACKGROUND: Long-lasting insecticidal nets (LLINs) have been the primary vector control strategy until indoor residual spraying (IRS) was added in Homa Bay and Migori Counties in western Kenya. The objective of this study was to evaluate the impact of LLINs integrated with IRS on the prevalence of asymptomatic and submicroscopic Plasmodium infections in Homa Bay County. METHODS: A two-stage cluster sampling procedure was employed to enroll study participants aged ≥ 6 months old. Four consecutive community cross-sectional surveys for Plasmodium infection were conducted in residents of Homa Bay county, Kenya. Prior to the start of the study, all study households received LLINs, which were distributed between June 2017 and March 2018. The first (February 2018) and second (June 2018) surveys were conducted before and after the first round of IRS (Feb-Mar 2018), while the third (February 2019) and fourth (June 2019) surveys were conducted before and after the second application of IRS (February-March 2019). Finger-prick blood samples were obtained to prepare thick and thin smears for microscopic determination and qPCR diagnosis of Plasmodium genus. RESULTS: Plasmodium spp. infection prevalence by microscopy was 18.5% (113/610) before IRS, 14.2% (105/737) and 3.3% (24/720) after the first round of IRS and 1.3% (11/849) after the second round of IRS (p < 0.0001). Submicroscopic (blood smear negative, qPCR positive) parasitaemia reduced from 18.9% (115/610) before IRS to 5.4% (46/849) after IRS (p < 0.0001). However, the proportion of PCR positive infections that were submicroscopic increased from 50.4% (115/228) to 80.7% (46/57) over the study period (p < 0.0001). Similarly, while the absolute number and proportions of microscopy positives which were asymptomatic decreased from 12% (73/610) to 1.2% (9/849) (p < 0.0001), the relative proportion increased. Geometric mean density of P. falciparum parasitaemia decreased over the 2-year study period (p < 0.0001). CONCLUSIONS: These data suggest that two annual rounds of IRS integrated with LLINs significantly reduced the prevalence of Plasmodium parasitaemia, while the proportion of asymptomatic and submicroscopic infections increased. To reduce cryptic P. falciparum transmission and improve malaria control, strategies aimed at reducing the number of asymptomatic and submicroscopic infections should be considered.


Asunto(s)
Insecticidas , Malaria Falciparum , Malaria , Plasmodium , Infecciones Asintomáticas/epidemiología , Bahías , Estudios Transversales , Humanos , Lactante , Kenia/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Control de Mosquitos/métodos , Parasitemia/epidemiología , Parasitemia/prevención & control , Plasmodium falciparum
3.
BMC Infect Dis ; 22(1): 768, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192672

RESUMEN

BACKGROUND: Malaria remains a public health problem in Kenya despite sustained interventions deployed by the government. One of the major impediments to effective malaria control is a lack of accurate diagnosis and effective treatment. This study was conducted to assess clinical malaria incidence and treatment seeking profiles of febrile cases in western Kenya. METHODS: Active case detection of malaria was carried out in three eco-epidemiologically distinct zones topologically characterized as lakeshore, hillside, and highland plateau in Kisumu County, western Kenya, from March 2020 to March 2021. Community Health Volunteers (CHVs) conducted biweekly visits to residents in their households to interview and examine for febrile illness. A febrile case was defined as an individual having fever (axillary temperature ≥ 37.5 °C) during examination or complaints of fever and other nonspecific malaria related symptoms 1-2 days before examination. Prior to the biweekly malaria testing by the CHVs, the participants' treatment seeking methods were based on their behaviors in response to febrile illness. In suspected malaria cases, finger-prick blood samples were taken and tested for malaria parasites with ultra-sensitive Alere® malaria rapid diagnostic tests (RDT) and subjected to real-time polymerase chain reaction (RT-PCR) for quality control examination. RESULTS: Of the total 5838 residents interviewed, 2205 residents had high temperature or reported febrile illness in the previous two days before the visit. Clinical malaria incidence (cases/1000people/month) was highest in the lakeshore zone (24.3), followed by the hillside (18.7) and the highland plateau zone (10.3). Clinical malaria incidence showed significant difference across gender (χ2 = 7.57; df = 2, p = 0.0227) and age group (χ2 = 58.34; df = 4, p < 0.0001). Treatment seeking patterns of malaria febrile cases showed significant difference with doing nothing (48.7%) and purchasing antimalarials from drug shops (38.1%) being the most common health-seeking pattern among the 2205 febrile residents (χ2 = 21.875; df = 4, p < 0.0001). Caregivers of 802 school-aged children aged 5-14 years with fever primarily sought treatment from drug shops (28.9%) and public hospitals (14.0%), with significant lower proportions of children receiving treatment from traditional medication (2.9%) and private hospital (4.4%) (p < 0.0001). There was no significant difference in care givers' treatment seeking patterns for feverish children under the age of five (p = 0.086). Residents with clinical malaria cases in the lakeshore and hillside zones sought treatment primarily from public hospitals (61.9%, 60/97) traditional medication (51.1%, 23/45) respectively (p < 0.0001). However, there was no significant difference in the treatment seeking patterns of highland plateau residents with clinical malaria (p = 0.431).The main factors associated with the decision to seek treatment were the travel distance to the health facility, the severity of the disease, confidence in the treatment, and affordability. CONCLUSION: Clinical malaria incidence remains highest in the Lakeshore (24.3cases/1000 people/month) despite high LLINs coverage (90%). The travel distance to the health facility, severity of disease and affordability were mainly associated with 80% of residents either self-medicating or doing nothing to alleviate their illness. The findings of this study suggest that the Ministry of Health should strengthen community case management of malaria by providing supportive supervision of community health volunteers to advocate for community awareness, early diagnosis, and treatment of malaria.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/uso terapéutico , Niño , Fiebre/tratamiento farmacológico , Fiebre/epidemiología , Fiebre/etiología , Humanos , Incidencia , Recién Nacido , Kenia/epidemiología , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología
4.
Malar J ; 20(1): 472, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930283

RESUMEN

BACKGROUND: The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetectable infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a rural area of western Kenya. METHODS: A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consistent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential determinants of submicroscopic infections. RESULTS: Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 individuals, 95% CI 28.9-42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6-30.8). The risk of submicroscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48). CONCLUSION: Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. falciparum parasites to local mosquito vectors.


Asunto(s)
Malaria Falciparum/epidemiología , Microscopía/estadística & datos numéricos , Plasmodium falciparum/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Población Rural/estadística & datos numéricos , Enfermedades no Diagnosticadas/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Prevalencia , Enfermedades no Diagnosticadas/parasitología , Adulto Joven
5.
J Med Entomol ; 50(5): 1140-51, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24180120

RESUMEN

Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.


Asunto(s)
Culicidae/parasitología , Insectos Vectores/parasitología , Malaria Falciparum/parasitología , Control de Mosquitos/métodos , Plasmodium falciparum/fisiología , Animales , Culicidae/clasificación , Filariasis Linfática/parasitología , Ambiente , Ensayo de Inmunoadsorción Enzimática , Femenino , Insectos Vectores/clasificación , Kenia/epidemiología , Malaria Falciparum/epidemiología , Masculino , Especificidad de la Especie
6.
Res Sq ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090522

RESUMEN

Background: Designing, implementing, and upscaling effective malaria vector control strategies necessitates understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and human behavior in different ecological settings in western Kenya. Methods: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 1900 to 0700 hours for four consecutive nights in four houses per village using human landing collection method. The nocturnal biting activities of each Anopheles species were expressed as the mean number of mosquitoes landing per person per hour. The human behavior study was conducted via observations and questionnaire surveys. Species within Anopheles gambiae and Anopheles funestus complexes were differentiated by polymerase chain reaction (PCR) and the presence of Plasmodium falciparumcircumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). Results: Altogether, a total of 2,037 adult female Anophelines were collected comprising of An. funestus s.l. (76.7%), An.gambiae s.l.(22.8%) and Anopheles coustani (0.5%). Overall, Anopheles funestus was the predominant species collected in Ahero (96.7%) while An. gambiae s.l was dominant in Kisian (86.6%) and Kimaeti (100%) collections. PCR results revealed that An. arabiensis constituted 80.5% and 79% of the An.gambiae s.l samples analysed from Ahero and Kisian respectively. An. gambiae s.s (hereafter An.gambiae) (98.1%) was the dominant species collected in Kimaeti. All the An. funestus s.l samples analysed belonged to An. funestus s.s (hereafter An. funestus). Indoor biting densities of Anopheles gambiae and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred early morning between 0430-0630 hours in the lowlands for An. funestus both indoors and outdoors. In the highlands (Kimaeti), the peak biting of An.gambiae occurred between 0100-0200 hours indoors. Over 50% of the study population stayed outdoors from 1800 to 2200 hours and woke up at 0500 hours coinciding with the times highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiaein the highland. Conclusion: The study shows heterogeneity of Anophelines distribution, high outdoor malaria transmission, and peak biting activity by An. funestus (early morning) when humans are not protected by bed nets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors i.e using non-pyrethroids-based indoor residual spraying and spatial repellents outdoors are needed.

7.
Parasit Vectors ; 16(1): 376, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864217

RESUMEN

BACKGROUND: Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION: This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.


Asunto(s)
Anopheles , Mordeduras y Picaduras , Malaria , Animales , Humanos , Femenino , Malaria/epidemiología , Malaria/prevención & control , Ecosistema , Mosquitos Vectores , Kenia/epidemiología , Conducta Alimentaria
8.
Insects ; 14(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36975958

RESUMEN

The mitochondrial marker, COII, was employed to assess the genetic structure and diversity of Anopheles funestus, a very important malaria vector in Africa that adapt and colonize different ecological niches in western Kenya. Mosquitoes were collected using mechanical aspirators in four areas (Bungoma, Port Victoria, Kombewa, and Migori) in western Kenya. Following morphological identification, PCR was used to confirm the species. The COII gene was amplified, sequenced, and analyzed to determine genetic diversity and population structure. A total of 126 (Port Victoria-38, Migori-38, Bungoma-22, and Kombewa-28) sequences of COII were used for population genetic analysis. Anopheles funestus had a high haplotype diversity (Hd = 0.97 to 0.98) but low nucleotide diversity (Π = 0.004 to 0.005). The neutrality test revealed negative Tajima's D and Fs values indicating an excess of low-frequency variation. This could be attributed to either population expansion or negative selection pressure across all the populations. No genetic or structural differentiation (Fst = -0.01) and a high level of gene flow (Gamma St, Nm = 17.99 to 35.22) were observed among the populations. Population expansion suggests the high adaptability of this species to various ecological requirements, hence sustaining its vectorial capacity and malaria transmission.

9.
Am J Trop Med Hyg ; 107(2): 484-491, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35895424

RESUMEN

Expanding agricultural irrigation efforts to enhance food security and socioeconomic development in sub-Saharan Africa may affect malaria transmission and socioeconomic variables that increase the risk of anemia in local communities. We compared the prevalence of anemia, Plasmodium falciparum infection, and indicators of socioeconomic status related to nutrition in communities in Homa Bay County, Kenya, where an agricultural irrigation scheme has been implemented, to that in nearby communities where there is no agricultural irrigation. Cross-sectional surveys conducted showed that anemia prevalence defined by WHO criteria (hemoglobin < 11 g/dL) was less in communities in the irrigated areas than in the non-irrigated areas during the wet season (38.9% and 51.5%, χ2 = 4.29, P = 0.001) and the dry season (25.2% and 34.1%, χ2 = 7.33, P = 0.007). In contrast, Plasmodium falciparum infection prevalence was greater during the wet season in irrigated areas than in non-irrigated areas (15.3% versus 7.8%, χ2 = 8.7, P = 0.003). There was, however, no difference during the dry season (infection prevalence, < 1.8%). Indicators of nutritional status pertinent to anemia pathogenesis such as weekly consumption of non-heme- and heme-containing foods and household income were greater in communities located within the irrigation scheme versus those outside the irrigation scheme (P < 0.0001). These data indicate that current agricultural irrigation schemes in malaria-endemic communities in this area have reduced the risk of anemia. Future studies should include diagnostic tests of iron deficiency, parasitic worm infections, and genetic hemoglobin disorders to inform public health interventions aimed at reducing community anemia burden.


Asunto(s)
Anemia , Malaria Falciparum , Malaria , Humanos , Kenia/epidemiología , Estudios Transversales , Malaria/epidemiología , Malaria Falciparum/parasitología , Anemia/epidemiología , Hemoglobinas , Prevalencia
10.
Front Genet ; 13: 867906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656326

RESUMEN

Background: Malaria elimination and eradication efforts can be advanced by including transmission-blocking or reducing vaccines (TBVs) alongside existing interventions. Key transmission-blocking vaccine candidates, such as Pfs230 domain one and Pfs48/45 domain 3, should be genetically stable to avoid developing ineffective vaccines due to antigenic polymorphisms. We evaluated genetic polymorphism and temporal stability of Pfs230 domain one and Pfs48/45 domain three in Plasmodium falciparum parasites from western Kenya. Methods: Dry blood spots on filter paper were collected from febrile malaria patients reporting to community health facilities in endemic areas of Homa Bay and Kisumu Counties and an epidemic-prone area of Kisii County in 2018 and 2019. Plasmodium speciation was performed using eluted DNA and real-time PCR. Amplification of the target domains of the two Pfs genes was performed on P. falciparum positive samples. We sequenced Pfs230 domain one on 156 clinical isolates and Pfs48/45 domain three on 118 clinical isolates to infer the levels of genetic variability, signatures of selection, genetic diversity indices and perform other evolutionary analyses. Results: Pfs230 domain one had low nucleotide diversity (π = 0.15 × 10-2) with slight variation per study site. Six polymorphic sites with nonsynonymous mutations and eight haplotypes were discovered. I539T was a novel variant, whereas G605S was nearing fixation. Pfs48/45 domain three had a low π (0.063 × 10-2), high conservation index, and three segregating sites, resulting in nonsynonymous mutation and four haplotypes. Some loci of Pfs230 D1 were in positive or negative linkage disequilibrium, had negative or positive selection signatures, and others (1813, 1955) and (1813, 1983) had a history of recombination. Mutated loci pairs in Pfs48/45 domain three had negative linkage disequilibrium, and some had negative and positive Tajima's D values with no history of recombination events. Conclusion: The two transmission blocking vaccine candidates have low nucleotide diversity, a small number of zone-specific variants, high nucleotide conservation index, and high frequency of rare alleles. With the near fixation a polymorphic site and the proximity of mutated codons to antibody binding epitopes, it will be necessary to continue monitoring sequence modifications of these domains when designing TBVs that include Pfs230 and Pfs48/45 antigens.

11.
PLoS One ; 17(4): e0266394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35390042

RESUMEN

BACKGROUND: Leading transmission-blocking vaccine candidates such as Plasmodium falciparum surface protein 25 (Pfs25 gene) may undergo antigenic alterations which may render them ineffective or allele-specific. This study examines the level of genetic diversity, signature of selection and drivers of Pfs25 polymorphisms of parasites population in regions of western Kenya with varying malaria transmission intensities. METHODS: Dry blood spots (DBS) were collected in 2018 and 2019 from febrile outpatients with malaria at health facilities in malaria-endemic areas of Homa Bay, Kisumu (Chulaimbo) and the epidemic-prone highland area of Kisii. Parasites DNA were extracted from DBS using Chelex method. Species identification was performed using real-time PCR. The 460 base pairs (domains 1-4) of the Pfs25 were amplified and sequenced for a total of 180 P. falciparum-infected blood samples. RESULTS: Nine of ten polymorphic sites were identified for the first time. Overall, Pfs25 exhibited low nucleotide diversity (0.04×10-2) and low mutation frequencies (1.3% to 7.7%). Chulaimbo had the highest frequency (15.4%) of mutated sites followed by Kisii (6.7%) and Homa Bay (5.1%). Neutrality tests of Pfs25 variations showed significant negative values of Tajima's D (-2.15, p<0.01) and Fu's F (-10.91, p<0.001) statistics tests. Three loci pairs (123, 372), (364, 428) and (390, 394) were detected to be under linkage disequilibrium and none had history of recombination. These results suggested that purifying selection and inbreeding might be the drivers of the observed variation in Pfs25. CONCLUSION: Given the low level of nucleotide diversity, it is unlikely that a Pfs25 antigen-based vaccine would be affected by antigenic variations. However, continued monitoring of Pfs25 immunogenic domain 3 for possible variants that might impact vaccine antibody binding is warranted.


Asunto(s)
Vacunas contra la Malaria , Proteínas Protozoarias , Selección Genética , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Humanos , Kenia/epidemiología , Vacunas contra la Malaria/genética , Malaria Falciparum/epidemiología , Mutación , Nucleótidos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
12.
PLoS One ; 16(10): e0255321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34634069

RESUMEN

BACKGROUND: An. funestus is a major Afrotropical vector of human malaria. This study sought to investigate the larval ecology, sporozoite infection rates and blood meal sources of An. funestus in western Kenya. METHODS: Larval surveys were carried out in Bungoma (Highland) and Kombewa (lowland) of western Kenya. Aquatic habitats were identified, characterized, georeferenced and carefully examined for mosquito larvae and predators. Indoor resting mosquitoes were sampled using pyrethrum spray catches. Adults and larvae were morphologically and molecularly identified to species. Sporozoite infections and blood meal sources were detected using real-time PCR and ELISA respectively. RESULTS: Of the 151 aquatic habitats assessed, 62/80 (78%) in Bungoma and 58/71(82%) in Kombewa were positive for mosquito larvae. Of the 3,193 larvae sampled, An. funestus larvae constitute 38% (1224/3193). Bungoma recorded a higher number of An. funestus larvae (85%, 95%, CI, 8.722-17.15) than Kombewa (15%, 95%, CI, 1.33-3.91). Molecular identification of larvae showed that 89% (n = 80) were An. funestus. Approximately 59%, 35% and 5% of An. funestus larvae co-existed with An. gambiae s.l, Culex spp and An. coustani in the same habitats respectively. Of 1,221 An. funestus s.l adults sampled, molecular identifications revealed that An. funestus constituted 87% (n = 201) and 88% (n = 179) in Bungoma and Kombewa, respectively. The Plasmodium falciparum sporozoite rate of An. funestus in Bungoma and Kombewa was 2% (3/174) and 1% (2/157), respectively, and the human blood index of An. funestus was 84% (48/57) and 89% (39/44) and for Bungoma and Kombewa, respectively. CONCLUSION: Man-made ponds had the highest abundance of An. funestus larvae. Multiple regression and principal component analyses identified the distance to the nearest house as the key environmental factor associated with the abundance of An. funestus larvae in aquatic habitats. This study serves as a guide for the control of An. funestus and other mosquito species to complement existing vector control strategies.


Asunto(s)
Anopheles/embriología , Larva/crecimiento & desarrollo , Malaria Falciparum/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/parasitología , Animales , Anopheles/parasitología , Ecología , Humanos , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Kenia , Larva/parasitología , Plasmodium falciparum/aislamiento & purificación
13.
PLoS One ; 16(11): e0260434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34843560

RESUMEN

Plasmodium falciparum parasites have evolved genetic adaptations to overcome immune responses mounted by diverse Anopheles vectors hindering malaria control efforts. Plasmodium falciparum surface protein Pfs47 is critical in the parasite's survival by manipulating the vector's immune system hence a promising target for blocking transmission in the mosquito. This study aimed to examine the genetic diversity, haplotype distribution, and population structure of Pfs47 and its implications on malaria infections in endemic lowlands in Western Kenya. Cross-sectional mass blood screening was conducted in malaria endemic regions in the lowlands of Western Kenya: Homa Bay, Kombewa, and Chulaimbo. Dried blood spots and slide smears were simultaneously collected in 2018 and 2019. DNA was extracted using Chelex method from microscopic Plasmodium falciparum positive samples and used to genotype Pfs47 using polymerase chain reaction (PCR) and DNA sequencing. Thirteen observed haplotypes of the Pfs47 gene were circulating in Western Kenya. Population-wise, haplotype diversity ranged from 0.69 to 0.77 and the nucleotide diversity 0.10 to 0.12 across all sites. All the study sites displayed negative Tajima's D values although not significant. However, the negative and significant Fu's Fs statistical values were observed across all the study sites, suggesting population expansion or positive selection. Overall genetic differentiation index was not significant (FST = -0.00891, P > 0.05) among parasite populations. All Nm values revealed a considerable gene flow in these populations. These results could have important implications for the persistence of high levels of malaria transmission and should be considered when designing potential targeted control interventions.


Asunto(s)
Malaria Falciparum/parasitología , Glicoproteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Estudios Transversales , Frecuencia de los Genes , Variación Genética , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Mutación , Plasmodium falciparum/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA