Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(30): 10283-10302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35647708

RESUMEN

Mechanical damage of fresh fruit occurs throughout the postharvest supply chain leading to poor consumer acceptance and marketability. In this review, the mechanisms of damage development are discussed first. Mathematical modeling provides advanced ways to describe and predict the deformation of fruit with arbitrary geometry, which is important to understand their mechanical responses to external forces. Also, the effects of damage at the cellular and molecular levels are discussed as this provides insight into fruit physiological responses to damage. Next, direct measurement methods for damage including manual evaluation, optical detection, magnetic resonance imaging, and X-ray computed tomography are examined, as well as indirect methods based on physiochemical indexes. Also, methods to measure fruit susceptibility to mechanical damage based on the bruise threshold and the amount of damage per unit of impact energy are reviewed. Further, commonly used external and interior packaging and their applications in reducing damage are summarized, and a recent biomimetic approach for designing novel lightweight packaging inspired by the fruit pericarp. Finally, future research directions are provided.HIGHLIGHTSMathematical modeling has been increasingly used to calculate damage to fruit.Cell and molecular mechanisms response to fruit damage is an under-explored area.Susceptibility measurement of different mechanical forces has received attention.Customized design of reusable and biodegradable packaging is a hot topic of research.


Asunto(s)
Frutas , Fenómenos Mecánicos , Frutas/química
2.
Molecules ; 27(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35566329

RESUMEN

Hot water blanching at 80 °C for 3 min can be used as a novel pre-treatment step in pomegranate peel to preserve the integrity of the phytochemical content within the peel extracts by lowering or inactivating enzymes such as polyphenol (PPO) oxidase and peroxidase (POD) that are responsible for the break-down of phytochemicals within the peel. The aim of this study was to investigate the effect of hot water blanching pre-treatment on yield, bioactive compounds, antioxidants, enzyme inactivation, and antibacterial activity of 'Wonderful', 'Acco', and 'Herskawitz' pomegranate peel extracts. We used a variety of spectrophotometric-based assays and liquid chromatography mass spectrometry (LC-MS)-based approach to characterize and quantify metabolites within the peel extracts. Blanching significantly (p < 0.05) reduced PPO activity in all peel extracts, with the highest PPO reduction in 'Herskawitz' peel extracts at 0.25 U/mL. Furthermore, higher antioxidant activity in 'Herskawitz' blanched peel extracts using 2,2-diphenyl-1-picryl hydrazyl (DPPH) antioxidant activity, ferric ion reducing antioxidant power (FRAP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity at 567.78 ± 9.47 µmol Trolox/g DM, 800.05 ± 1.60 µmol Trolox/g DM, and 915.27 ± 0.61 µmol Trolox/g DM, respectively, was noted. 'Herskawitz' blanched peel extracts were recorded with the lowest minimum inhibitory concentration (MIC) value of 80 µg/mL for Gram-positive Bacillus subtilis and Gram-negative Klebsiella pneumoniae bacteria strains. A total of 30 metabolites were present in 'Acco' and 'Herskawitz' peel extracts and were tentatively identified after LC-MS profiling. This study demonstrates that blanched peel extracts from 'Herskawitz' cultivar have great potential for commercial use in value-added products in the nutraceutical, cosmeceutical, and pharmacological industries.


Asunto(s)
Antiinfecciosos , Granada (Fruta) , Antibacterianos/análisis , Antibacterianos/farmacología , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Antioxidantes/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Agua
3.
Sensors (Basel) ; 21(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34372227

RESUMEN

Bruise damage is a very commonly occurring defect in apple fruit which facilitates disease occurrence and spread, leads to fruit deterioration and can greatly contribute to postharvest loss. The detection of bruises at their earliest stage of development can be advantageous for screening purposes. An experiment to induce soft bruises in Golden Delicious apples was conducted by applying impact energy at different levels, which allowed to investigate the detectability of bruises at their latent stage. The existence of bruises that were rather invisible to the naked eye and to a digital camera was proven by reconstruction of hyperspectral images of bruised apples, based on effective wavelengths and data dimensionality reduced hyperspectrograms. Machine learning classifiers, namely ensemble subspace discriminant (ESD), k-nearest neighbors (KNN), support vector machine (SVM) and linear discriminant analysis (LDA) were used to build models for detecting bruises at their latent stage, to study the influence of time after bruise occurrence on detection performance and to model quantitative aspects of bruises (severity), spanning from latent to visible bruises. Over all classifiers, detection models had a higher performance than quantitative ones. Given its highest speed in prediction and high classification performance, SVM was rated most recommendable for detection tasks. However, ESD models had the highest classification accuracy in quantitative (>85%) models and were found to be relatively better suited for such a multiple category classification problem than the rest.


Asunto(s)
Contusiones , Malus , Análisis Discriminante , Imágenes Hiperespectrales , Máquina de Vectores de Soporte
4.
Molecules ; 26(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361727

RESUMEN

Enzymatic pretreatment of seeds is a novel approach that enhances the health benefits of the extracted oil. The study investigated the influence of the enzymatic pretreatment of seeds on the quality of oil from different pomegranate cultivars. The quality of the ultrasound-assisted (and ethanol-extracted) oil was studied, with respect to the refractive index (RI), yellowness index (YI), conjugated dienes (K232), peroxide value (PV) ρ-anisidine value (AV), total oxidation value (TOTOX), total carotenoid content (TCC), total phenolic compounds (TPC), fatty acid composition, phytosterol composition, ferric reducing antioxidant power (FRAP), and 2.2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity. The seeds of three different pomegranate cultivars ('Wonderful', 'Herskawitz', and 'Acco') were digested with an equal mixture of Pectinex Ultra SPL, Flavourzyme 100 L, and cellulase crude enzymes, at a concentration, pH, temperature, and time of 1.7%, 4.5, 40 °C, and 5 h, respectively. Enzymatic pretreatment of PS increased oil yield, PV, TPC, TCC, and DPPH radical scavenging capacity, but decreased the YI. The levels of K232, AV and TOTOX, fatty acids, phytosterols, RI, and FRAP, were not significantly affected by enzymatic pretreatment of PS. Principal component analysis (PCA) established that oil extracted from the 'Acco' seed after enzymatic pretreatment had higher yield, TPC, TCC, and DPPH radical scavenging capacity. Therefore, enzyme-pretreated 'Acco' pomegranate fruit seed is a source of quality seed oil with excellent antioxidant properties.


Asunto(s)
Antioxidantes/aislamiento & purificación , Hidrolasas/química , Extracción Líquido-Líquido/métodos , Aceites de Plantas/aislamiento & purificación , Granada (Fruta)/química , Semillas/química , Antioxidantes/química , Antioxidantes/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Carotenoides/química , Carotenoides/aislamiento & purificación , Carotenoides/farmacología , Etanol/química , Ácidos Grasos/química , Ácidos Grasos/aislamiento & purificación , Ácidos Grasos/farmacología , Frutas/química , Alimentos Funcionales/provisión & distribución , Humanos , Oxidación-Reducción , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fitosteroles/química , Fitosteroles/aislamiento & purificación , Fitosteroles/farmacología , Picratos/antagonistas & inhibidores , Aceites de Plantas/química , Análisis de Componente Principal , Solventes/química , Sonicación/métodos
5.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199618

RESUMEN

This study determined the antimicrobial and antioxidant activity of lemongrass (LO), thyme (TO), and oregano (OO) essential oils and ethanolic extracts of pomegranate peel (PPE) and grape pomace (GPE) as candidate ingredients for edible coatings. Antifungal effects against Botrytis cinerea and Penicillium spp. were tested using paper disc and well diffusion methods. Radical scavenging activity (RSA) was evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays. Gas chromatography-mass spectrometry analysis identified limonene (16.59%), α-citral (27.45%), ß-citral (27.43%), thymol (33.31%), paracymene (43.26%), 1,8-cineole (17.53%), and trans-caryphellene (60.84%) as major compounds of the essential oils. From both paper disc and well diffusion methods, LO recorded the widest zone of inhibition against tested microbes (B. cinerea and Penicillium spp.). The minimum inhibitory concentrations of LO against B. cinerea and Penicillium spp., were 15 µL/mL and 30 µL/mL, respectively. The highest (69.95%) and lowest (1.64%) RSA at 1 mg/mL were recorded for PPE and OO. Application of sodium alginate and chitosan-based coatings formulated with LO (15 or 30 µL/mL) completely inhibited spore germination and reduced the decay severity of 'Wonderful' pomegranate. Lemongrass oil proved to be a potential antifungal agent for edible coatings developed to extend shelf life of 'Wonderful' pomegranate.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cymbopogon/química , Aceites Volátiles/farmacología , Origanum/química , Thymus (Planta)/química , Antiinfecciosos/química , Antioxidantes/química , Botrytis/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Penicillium/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Esporas Fúngicas/efectos de los fármacos , Terpenos
6.
J Food Sci Technol ; 58(12): 4451-4464, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629509

RESUMEN

Seed oil quality is a function of several attributes which include its bioactive compounds, physicochemical and functional properties. These quality attributes are important in seed oil processing as they determine the oil palatability, nutritional and market value. Besides the health, environmental and economic issues related to seed oil extraction using organic solvents such as hexane, other conventional seed oil extraction techniques such as supercritical fluid extraction, enzyme digestion and cold pressing are associated with low recovery of oil and bioactive compounds. Application of novel seeds pretreatments techniques such as microwaving, enzymatic digestion, pulsed electric field and ultrasonication do not only improve the oil yield and quality attributes, but also reduces seed oil extraction time, solvent and energy consumption. Higher phenolic compounds, carotenoids, tocopherols, phytosterols and antioxidant properties in oil from pretreated seeds offer health benefits related to the prevention of cancer, diabetes, obesity, inflammatory and cardiovascular diseases. Increased consumer interest in functional foods and the potential of seeds pretreatments in enhancing the extractability of bioactive compounds from plant material has increased the application of novel pretreatment techniques on diverse oilseeds. This review describes the commonly studied novel seeds pretreatment techniques and critically discusses their influence on the oil physicochemical attributes, oxidation indices, bioactive compounds and antioxidant properties.

7.
Molecules ; 25(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486338

RESUMEN

This study investigated the effect of blanching pomegranate seeds (PS) on oil yield, refractive index (RI), yellowness index (YI), conjugated dienes (K232), conjugated trienes (K270), total carotenoid content (TCC), total phenolic compounds (TPC) and DPPH radical scavenging of the extracted oil. Furthermore, phytosterol and fatty acid compositions of the oil extracted under optimum blanching conditions were compared with those from the oil extracted from unblanched PS. Three different blanching temperature levels (80, 90, and 100 °C) were studied at a constant blanching time of 3 min. The blanching time was then increased to 5 min at the established optimum blanching temperature (90 °C). Blanching PS increased oil yield, K232, K270, stigmasterol, punicic acid, TPC and DPPH radical scavenging, whereas YI, ß-sitosterol, palmitic acid and linoleic acid were decreased. The RI, TCC, brassicasterol, stearic acid, oleic acid and arachidic acid of the extracted oil were not significantly (p > 0.05) affected by blanching. Blanching PS at 90 °C for 3 to 5 min was associated with oil yield, TPC and DPPH. Blanching PS at 90 °C for 3 to 5 min will not only increase oil yield but could also improve functional properties such as antioxidant activity, which are desirable in the cosmetic, pharmaceutical, nutraceutical and food industries.


Asunto(s)
Antioxidantes/química , Carotenoides/química , Aceites de Plantas/química , Granada (Fruta)/química , Semillas/química , Compuestos de Bifenilo/química , Colestadienoles/química , Suplementos Dietéticos , Ácidos Eicosanoicos/química , Ácidos Grasos/química , Tecnología de Alimentos , Depuradores de Radicales Libres/química , Ácido Linoleico/química , Ácidos Linolénicos/química , Ácido Oléico/química , Fenol/química , Fenoles/química , Fitosteroles/química , Picratos/química , Refractometría , Ácidos Esteáricos/química , Temperatura
8.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066412

RESUMEN

Pomegranate peel has substantial amounts of phenolic compounds, such as hydrolysable tannins (punicalin, punicalagin, ellagic acid, and gallic acid), flavonoids (anthocyanins and catechins), and nutrients, which are responsible for its biological activity. However, during processing, the level of peel compounds can be significantly altered depending on the peel processing technique used, for example, ranging from 38.6 to 50.3 mg/g for punicalagins. This review focuses on the influence of postharvest processing factors on the pharmacological, phytochemical, and nutritional properties of pomegranate (Punica granatum L.) peel. Various peel drying strategies (sun drying, microwave drying, vacuum drying, and oven drying) and different extraction protocols (solvent, super-critical fluid, ultrasound-assisted, microwave-assisted, and pressurized liquid extractions) that are used to recover phytochemical compounds of the pomegranate peel are described. A total phenolic content of 40.8 mg gallic acid equivalent (GAE)/g DM was recorded when sun drying was used, but the recovery of the total phenolic content was higher at 264.3 mg TAE/g when pressurised liquid extraction was performed. However, pressurised liquid extraction is costly due to the high initial investment costs and the limited possibility of carrying out selective extractions of organic compounds from complex peel samples. The effects of these methods on the phytochemical profiles of pomegranate peel extracts are also influenced by the cultivar and conditions used, making it difficult to determine best practice. For example, oven drying at 60 °C resulted in higher levels of punicalin of 888.04 mg CE/kg DM compared to those obtained 40 °C of 768.11 mg CE/kg DM for the Wonderful cultivar. Processes that are easy to set up, cost-effective, and do not compromise the quality and safety aspects of the peel are, thus, more desirable. From the literature survey, we identified a lack of studies testing pretreatment protocols that may result in a lower loss of the valuable biological compounds of pomegranate peels to allow for full exploitation of their health-promoting properties in potentially new value-added products.


Asunto(s)
Industria de Procesamiento de Alimentos/métodos , Fitoquímicos/química , Fitoquímicos/farmacología , Granada (Fruta)/química , Fraccionamiento Químico/métodos , Liofilización , Frutas/química , Humanos , Medicina Ayurvédica , Microondas , Valor Nutritivo , Solventes/química , Luz Solar , Vacio , Residuos
9.
BMC Complement Altern Med ; 16: 358, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27618992

RESUMEN

BACKGROUND: Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS(+) assays during simulated in vitro digestion. METHODS: Pomegranate juice, marc and peel were extracted in water, 50 % ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABTS(+) and FRAP assays before and after in vitro digestion. RESULTS: Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50 % ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal phase of in vitro digestion, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS(+) and FRAP assays, with correlation coefficients (r (2)) ranging between 0.930-0.990. In addition, the relationships between polyphenols (TPC and TFC) and radical cation scavenging activity in ABTS(+) were moderately positive in duodenal digests. CONCLUSION: Findings from this study showed that concentration of pomegranate polyphenols and the antioxidant capacity during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion.


Asunto(s)
Depuradores de Radicales Libres/química , Lythraceae/química , Modelos Biológicos , Fenoles/química , Extractos Vegetales/química , Animales , Compuestos de Bifenilo/química , Compuestos de Bifenilo/metabolismo , Digestión/fisiología , Estabilidad de Medicamentos , Depuradores de Radicales Libres/análisis , Humanos , Pepsina A , Picratos/química , Picratos/metabolismo , Extractos Vegetales/análisis , Porcinos
10.
J Sci Food Agric ; 96(3): 1002-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25809070

RESUMEN

BACKGROUND: This study investigated the changes in chemical attributes of pomegranate fruit such as total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, pH, individual compounds (organic acids and sugars) and volatile composition as affected by fruit maturity status and growing location (Kakamas, Koedoeshoek and Worcester in South Africa). Headspace solid phase microextraction coupled with gas chromatography/mass spectrometry was used for volatile analysis. RESULTS: A significant increase in TSS from 14.7 ± 0.6 to 17.5 ± 0.6 °Brix was observed with advancement in fruit maturity, while TA decreased from 2.1 ± 0.7 to 1.1 ± 0.3 g citric acid per 100 mL across all agro-climatic locations investigated. Fruit TSS/TA ratio and pH increased from 7.8 ± 2.6 to 16.6 ± 2.8 and from 3.3 ± 0.1 to 3.6 ± 0.2 respectively during fruit maturation across all agro-climatic locations. Fructose and glucose concentrations increased continually with fruit maturity from 69.4 ± 4.9 to 91.1 ± 4.9 g kg(-1) and from 57.1 ± 4.7 to 84.3 ± 5.2 g kg(-1) respectively. A total of 13 volatile compounds were detected and identified, belonging to five chemical classes. The most abundant volatile in unripe and mid-ripe fruit was 1-hexanol, while 3-hexen-1-ol was highest at commercial maturity. CONCLUSION: Knowledge on the impact of fruit maturity and agro-climatic locations (with different altitudes) on biochemical and aroma volatile attributes of pomegranate fruit provides a useful guide for selecting farm location towards improving fruit quality and the maturity stage best for juice processing.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Lythraceae/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/análisis , Agricultura/métodos , Clima , Humanos , Olfato , Sudáfrica
11.
Plants (Basel) ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732414

RESUMEN

The current review examines the state of knowledge and research on machine learning (ML) applications in horticultural production and the potential for predicting fresh produce losses and waste. Recently, ML has been increasingly applied in horticulture for efficient and accurate operations. Given the health benefits of fresh produce and the need for food and nutrition security, efficient horticultural production and postharvest management are important. This review aims to assess the application of ML in preharvest and postharvest horticulture and the potential of ML in reducing postharvest losses and waste by predicting their magnitude, which is crucial for management practices and policymaking in loss and waste reduction. The review starts by assessing the application of ML in preharvest horticulture. It then presents the application of ML in postharvest handling and processing, and lastly, the prospects for its application in postharvest loss and waste quantification. The findings revealed that several ML algorithms perform satisfactorily in classification and prediction tasks. Based on that, there is a need to further investigate the suitability of more models or a combination of models with a higher potential for classification and prediction. Overall, the review suggested possible future directions for research related to the application of ML in postharvest losses and waste quantification.

12.
Front Plant Sci ; 14: 1151697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152139

RESUMEN

Introduction: Fresh pomegranate fruit is susceptible to bruising, a common type of mechanical damage during harvest and at all stages of postharvest handling. Accurate and early detection of such damages in pomegranate fruit plays an important role in fruit grading. This study investigated the detection of bruises in fresh pomegranate fruit using hyperspectral imaging technique. Methods: A total of 90 sample of pomegranate fruit were divided into three groups of 30 samples, each representing purposefully induced pre-scanning bruise by dropping samples from 100 cm and 60 cm height on a metal surface. The control has no pre-scanning bruise (no drop). Two hyperspectral imaging setups were examined: visible and near infrared (400 to 1000 nm) and short wavelength infrared (1000 to 2500 nm). Region of interest (ROI) averaged reflectance spectra was implemented to reduce the image data. For all hypercubes a principal components analysis (PCA) based background removal were done prior to segmenting the region of interest (ROI) using the Evince® multi-variate analysis software 2.4.0. Then the average spectrum of the ROI of each sample was computed and transferred to the MATLAB 2022a (The MathWorks, Inc., Mass., USA) for classification. A two-layer feed-forward artificial neural network (ANN) is used for classification. Results and discussion: The accuracy of bruise severity classification ranged from 80 to 96.7%. When samples from both bruise severity (Bruise damage induced from a 100cm and 60 cm drop heights respectively) cases were merged, class recognition accuracy were 88.9% and 74.4% for the SWIR and Vis-NIR, respectively. This study implemented the method of selecting out informative bands and disregarding the redundant ones to decreases the data size and dimension. The study developed a more compact classification model by the data dimensionality reduction method. This study demonstrated the potential of using hyperspectral imaging technology in sensing and classification of bruise severity in pomegranate fruit. This work provides the foundation to build a compact and fast multispectral imaging-based device for practical farm and packhouse applications.

13.
Foods ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36613425

RESUMEN

Spectroscopy data are useful for modelling biological systems such as predicting quality parameters of horticultural products. However, using the wide spectrum of wavelengths is not practical in a production setting. Such data are of high dimensional nature and they tend to result in complex models that are not easily understood. Furthermore, collinearity between different wavelengths dictates that some of the data variables are redundant and may even contribute noise. The use of variable selection methods is one efficient way to obtain an optimal model, andthis was the aim of this work. Taking advantage of a non-contact spectrometer, near infrared spectral data in the range of 800-2500 nm were used to classify bruise damage in three apple cultivars, namely 'Golden Delicious', 'Granny Smith' and 'Royal Gala'. Six prominent machine learning classification algorithms were employed, and two variable selection methods were used to determine the most relevant wavelengths for the problem of distinguishing between bruised and non-bruised fruit. The selected wavelengths clustered around 900 nm, 1300 nm, 1500 nm and 1900 nm. The best results were achieved using linear regression and support vector machine based on up to 40 wavelengths: these methods reached precision values in the range of 0.79-0.86, which were all comparable (within error bars) to a classifier based on the entire range of frequencies. The results also provided an open-source based framework that is useful towards the development of multi-spectral applications such as rapid grading of apples based on mechanical damage, and it can also be emulated and applied for other types of defects on fresh produce.

14.
BMC Complement Altern Med ; 12: 200, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23110485

RESUMEN

BACKGROUND: This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. METHODS: Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. RESULTS: Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 µg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 µg/ml and 15.88 µg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising of more than 50% of total phenolic compounds detected in each cultivar. CONCLUSIONS: The present study showed that the tested pomegranate peels exhibited strong antibacterial, antioxidant and tyrosinase-inhibition activities. These results suggest that pomegranate fruit peel could be exploited as a potential source of natural antimicrobial and antioxidant agents as well as tyrosinase inhibitors.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Lythraceae/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Polifenoles/farmacología , Antibacterianos/análisis , Antioxidantes/análisis , Bacterias/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/análisis , Flavonoides/análisis , Flavonoides/farmacología , Frutas , Concentración 50 Inhibidora , Extractos Vegetales/química , Polifenoles/análisis
15.
Foods ; 11(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35206069

RESUMEN

The effects of gum arabic coatings combined with lemongrass oil and/or pomegranate peel extract on freshly harvested mature 'Wonderful' pomegranate fruit were studied. Fruit were coated with gum arabic (GA) (1.5% w/v) alone or enriched with lemongrass oil (LM) (0.1% v/v) and/or pomegranate peel extract (PP) (1% w/v). Fruit were packed into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high), and stored for 6 weeks at 5 ± 1 °C (90% RH). Evaluations were made every 2 weeks of cold storage and after 5 d of shelf life (20 °C and 65% RH). Fruit coated with GA + PP (4.09%) and GA + PP + LM (4.21%) coatings recorded the least cumulative weight loss compared to the uncoated control (9.87%). After 6 weeks, uncoated control and GA + PP + LM recorded the highest (24.55 mg CO2Kg-1h-1) and lowest (10.76 mg CO2Kg-1h-1) respiration rate, respectively. Coating treatments reduced the incidence of decay and treatments GA + LM + PP and GA + PP recorded the highest total flavonoid content between 2 and 6 weeks of storage. The findings suggest that GA coatings with/without LM and PP can be a beneficial postharvest treatment for 'Wonderful' pomegranates to reduce weight loss and decay development during cold storage.

16.
Foods ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35564015

RESUMEN

Fresh ready-to-cook fish fillets are susceptible to loss of freshness and accumulation of off-odour due to accelerated microbial spoilage. Suboptimal storage temperature and packaging conditions accelerate this process, limiting the economic potential. This study investigated the effects of modified atmosphere packaging (MAP) and storage temperature (0 °C and 4 °C) on the volatile compounds (VOCs) of Cape hake (Merluccius capensis) fish fillets as a predictor of shelf life and quality. Fresh Cape hake fillets were packaged under active modified atmosphere (40% CO2 + 30% O2 + 30% N2) and passive modified atmosphere (0.039% CO2 + 20.95% O2 + 78% N2) with or without an absorbent pad and stored at 0 °C and 4 °C for 12 d. The results obtained demonstrated that changes in VOCs and concentration were significantly (p < 0.05) influenced by MAP conditions, storage temperature and duration. A total of 16 volatiles were identified in the packaged Cape hake fillets: 4 primary VOCs and 12 secondary VOCs. The spoilage VOCs identified include tri-methylamine (TMA) (ammonia-like), esters (sickeningly sweet) and sulphur group (putrid). The concentration of secondary VOCs increased continuously during storage. Active-MA-packaged fillets performed better and had lower TMA values of 0.31% at 0 °C on day 12 in comparison to 7.22% at 0 °C under passive on day 6. Ethyl acetate was detected in passive-MA-packaged fillets stored at 0 °C on day 3, and the levels increased to 3.26% on day 6, while active-MA-packaged fillets maintained freshness. This study showed that in conjunction with TMA, VOCs such as esters and sulphur-related compounds could be used as spoilage markers for Cape hake fish fillets.

17.
Front Plant Sci ; 13: 867555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873956

RESUMEN

The pomegranate kernel oil has gained global awareness due to the health benefits associated with its consumption; these benefits have been attributed to its unique fatty acid composition. For quality control of edible fats and oils, various analytical and calorimetric methods are often used, however, these methods are expensive, labor-intensive, and often require specialized sample preparation making them impractical on a commercial scale. Therefore, objective, rapid, accurate, and cost-effective methods are required. In this study, Fourier transformed near-infrared (FT-NIR) and mid-infrared (FT-MIR) spectroscopy as a fast non-destructive technique was investigated and compared to qualitatively and quantitatively predict the quality attributes of pomegranate kernel oil (cv. Wonderful, Acco, Herskawitz). For qualitative analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) was applied. Based on OPLS-DA, FT-MIR spectroscopy resulted in 100% discrimination between oil samples extracted from different cultivars. For quantitative analysis, partial least squares regression was used for model development over the NIR region of 7,498-940 and 6,102-5,774 cm-1 and provided the best prediction statistics for total carotenoid content (R 2, coefficient of determination; RMSEP, root mean square error of prediction; RPD, residual prediction deviation; R 2 = 0.843, RMSEP = 0.019 g ß-carotene/kg, RPD = 2.28). In the MIR region of 3,996-1,118 cm-1, models developed using FT-MIR spectroscopy gave the best prediction statistics for peroxide value (R 2 = 0.919, RMSEP = 1.05 meq, RPD = 3.54) and refractive index (R 2 = 0.912, RMSEP = 0.0002, RPD = 3.43). These results demonstrate the potential of infrared spectroscopy combined with chemometric analysis for rapid screening of pomegranate oil quality attributes.

18.
Foods ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810607

RESUMEN

The present research studied the influence of blanching and microwave pretreatment of seeds on the quality of pomegranate seed oil (PSO) extracted by cold pressing. Pomegranate seeds (cv. Acco) were independently blanched (95 ± 2 °C/3 min) and microwave heated (261 W/102 s) before cold pressing. The quality of the extracted oil was evaluated with respect to oxidation indices, refractive index, yellowness index, total carotenoids content, total phenolic content, flavor compounds, fatty acid composition, and 2.2-diphenyl-1-picryl hydrazyl (DPPH) and 2.2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity. Blanching and microwave pretreatments of seeds before pressing enhanced oil yield, total phenolic content, flavor compounds, and DPPH and ABTS radical scavenging capacity. Although the levels of oxidation indices, including the peroxide value, free fatty acids, acid value, ρ-anisidine value, and total oxidation value, also increased, and the oil quality conformed to the requirements of the Codex Alimentarius Commission (CODEX STAN 19-1981) standard for cold-pressed vegetable oils. On the other hand, blanching and microwave heating of seeds decreased the pomegranate seed oil's yellowness index, whilst the refractive index was not significantly (p > 0.05) affected. Even though both blanching and microwave pretreatment of seeds added value to the cold-pressed PSO, the oil extracted from blanched seeds exhibited lower oxidation indices. Regarding fatty acids, microwave pretreatment of seeds before cold pressing significantly increased palmitic acid, oleic acid, and linoleic acid, whilst it decreased the level of punicic acid. On the contrary, blanching of seeds did not significantly affect the fatty acid composition of PSO, indicating that the nutritional quality of the oil was not significantly affected. Therefore, blanching of seeds is an appropriate and valuable step that could be incorporated into the mechanical processing of PSO.

19.
Foods ; 10(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208467

RESUMEN

Weight loss and decay are common physiological disorders during postharvest handling and storage of pomegranates. The study focused on relating the ability of plastic liners as internal packaging to modify both gaseous and moisture atmosphere around the fruit to moisture dynamics and physical and physiological quality of pomegranate fruit (cv. Wonderful) during storage. Fruit were packed with no-liner, non-perforated 'Decco', non-perforated 'Zoe', micro-perforated Xtend®, 2 mm macro-perforated high density polyethylene (HDPE), and 4 mm macro-perforated HDPE plastic liners. After 84 days of storage at 5 °C and 90-95% relative humidity (RH), fruit packed with no-liner lost 15.6 ± 0.3% of initial weight. Non-perforated (Decco and Zoe) liners minimised losses to 0.79 and 0.82% compared to Xtend® micro-perforated (4.17%) and 2 mm HDPE (2.44%) and 4 mm macro-perforated HDPE (4.17%) liners, respectively. Clearly, micro- and macro-perforation of liners minimised moisture condensation, fruit decay, and shrivel severity. Micro-perforated Xtend® and macro-perforated 4 mm HDPE were the best treatments in minimising postharvest losses that are often associated with inadequate environment control inside packaging compared to the use of non-perforated liners.

20.
Foods ; 10(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208183

RESUMEN

In agro-food research and industry, mathematical models are being used to develop and optimize preharvest and postharvest operations, and their use has grown exponentially over the last decade. Generally, transport phenomena (such as airflow, heat, and mass transfer) during the cooling of horticultural products are complex; therefore, the use of computational modeling techniques is a valid alternative to expensive and difficult experiments because computers continuously become more powerful and less expensive, the software is readily available, and once a model is validated, it is a versatile tool to evaluate the effects of the operating and design parameters involved. In this review, thermo-mechanical modeling studies during postharvest handling are overviewed regarding the experimental, analytical, and computational approaches. The airflow, cooling kinetics, cooling uniformity, and the material and mechanical safety behavior of fresh fruit packaging boxes will be analyzed. Current concerns, challenges, and opportunities are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA