Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Infect Immun ; 91(3): e0053122, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920200

RESUMEN

CD4 T cells are required, along with antibodies, for complete protection from blood-stage infection with Plasmodium spp., which cause malaria. Without continuous exposure, as on emigration of people from endemic areas, protection from malaria decays. As in other persistent infections, low-level Plasmodium chabaudi infection protects the host from reinfection at 2 months postinfection, a phenomenon termed premunition. Premunition is correlated with T cell responses, rather than antibody levels. We previously showed that while both effector T cells (Teff) and memory T cells (Tmem) are present after infection, Teff protect better than Tmem. Here, we studied T cell kinetics post-infection by labeling dividing Ifng+ T cells with 5-bromo-2'-deoxyuridine (BrdU) in infected Ifng reporter mice. Large drops in specific T cell numbers and Ifng+ cells upon clearance of parasites suggest a mechanism for decay of protection. Although protection decays, CD4 Tmem persist, including a highly differentiated CD27- effector memory (Tem) subset that maintains some Ifng expression. In addition, pretreatment of chronically infected animals with neutralizing antibody to interferon gamma (IFN-γ) or with clodronate liposomes before reinfection decreases premunition, supporting a role for Th1-type immunity to reinfection. A pulse-chase experiment comparing chronically infected to treated animals showed that recently divided Ifng+ T cells, particularly IFN-γ+ TNF+ IL-2- T cells, are promoted by persistent infection. These data suggest that low-level persistent infection reduces CD4+ Tmem and multifunctional Teff survival, but promotes IFN-γ+ TNF+ IL-2- T cells and Ifng+ terminally differentiated effector T cells, and prolongs immunity.


Asunto(s)
Citocinas , Malaria , Animales , Ratones , Linfocitos T CD4-Positivos , Citocinas/metabolismo , Interferón gamma/metabolismo , Interleucina-2 , Infección Persistente , Reinfección/metabolismo , Subgrupos de Linfocitos T , Células TH1/inmunología
2.
Parasite Immunol ; 44(12): e12952, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131528

RESUMEN

Severe malaria occurs most in young children but is poorly understood due to the absence of a developmentally-equivalent rodent model to study the pathogenesis of the disease. Though functional and quantitative deficiencies in innate response and a biased T helper 1 (Th1) response are reported in newborn pups, there is little information available about this intermediate stage of the adaptive immune system in murine neonates. To fill this gap in knowledge, we have developed a mouse model of severe malaria in young mice using 15-day old mice (pups) infected with Plasmodium chabaudi. We observe similar parasite growth pattern in pups and adults, with a 60% mortality and a decrease in the growth rate of the surviving young mice. Using a battery of behavioral assays, we observed neurological symptoms in pups that do not occur in infected wildtype adults. CD4+ T cells were activated and differentiated to an effector T cell (Teff) phenotype in both adult and pups. However, there were relatively fewer and less terminally differentiated pup CD4+ Teff than adult Teff. Interestingly, despite less activation, the pup Teff expressed higher T-bet than adults' cells. These data suggest that Th1 cells are functional in pups during Plasmodium infection but develop slowly.


Asunto(s)
Linfocitos T CD4-Positivos , Malaria , Plasmodium chabaudi , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Malaria/complicaciones , Malaria/inmunología , Ratones Endogámicos C57BL , Células TH1/inmunología , Modelos Animales de Enfermedad , Enfermedades del Sistema Nervioso/etiología
3.
PLoS Pathog ; 14(4): e1006960, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29630679

RESUMEN

Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Malaria/inmunología , Malaria/prevención & control , Plasmodium chabaudi/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Interferón gamma/biosíntesis , Malaria/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
4.
Parasitol Res ; 118(7): 2277-2285, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31119381

RESUMEN

Malaria-associated bacteremia accounts for up to one-third of deaths from severe malaria, and non-typhoidal Salmonella (NTS) has been reported as a major complication of severe malarial infection. Patients who develop NTS bacteremia during Plasmodium infection show higher mortality rates than individuals with malaria alone. Systemic bacteremia can be caused by a wound or translocation from epithelial or endothelial sites. NTS is an intestinal pathogen, however the contribution of bacterial translocation from the intestinal tract during Plasmodium infection is not well studied. Here, we investigated the integrity of the intestinal barrier function of P. chabaudi-infected mice using large molecules and Salmonella infection. Intestinal histology and the adaptive immune response to malaria were also studied using light microscopy and flow cytometry. P. chabaudi infection compromised intestinal barrier function, which led to increased intestinal cellular infiltration. In addition, we observed increased serum lipopolysaccharide binding protein and leakage of soluble molecules from the intestine into the blood in infected mice. Plasmodium infection also increased intestinal translocation and dissemination of NTS to the liver. The adaptive immune response to P. chabaudi infection was also significantly impacted by NTS translocation. Reduced B and T cell activation were observed in co-infected animals, suggesting interference in the malaria-specific immune responses by bacteremia. These studies demonstrate that P. chabaudi infection induces failure of the barrier function of the intestinal wall and enhanced intestinal bacterial translocation, affecting anti-malarial immunity.


Asunto(s)
Inmunidad Adaptativa , Malaria/inmunología , Plasmodium chabaudi/inmunología , Infecciones por Salmonella/inmunología , Salmonella/inmunología , Animales , Bacteriemia , Coinfección , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Intestinos/microbiología , Intestinos/patología , Activación de Linfocitos , Malaria/complicaciones , Malaria/parasitología , Malaria/patología , Ratones , Ratones Endogámicos C57BL , Parasitemia , Infecciones por Salmonella/complicaciones , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología
5.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28031266

RESUMEN

Exposure to blood-stage malaria infection is often persistent, leading to generation of CD4 effector and effector memory T cells that contribute to protection. We showed previously that chronic exposure to blood-stage Plasmodium chabaudi offers the best protection from parasitemia and pathology in reinfection cases, correlating with an increase in Th1 cells. Although much is known about the features of resting or exhausted memory T cells (Tmem), little is known about the functional capacities of chronically stimulated but protective T cells. To determine the functional capacity of CD4 T cells generated by chronic infection upon reexposure to parasite, we compared their responses to known features of classical Tmem. The numbers of cytokine-producing T cells increased following infection in the polyclonal populations, suggesting an increase in pathogen-specific T cells. Malaria antigen-specific B5 T cell receptor (TCR) transgenic (Tg) T cells from chronic infection proliferated on reinfection and were highly sensitive to TCR stimulation without costimulation, as shown for Tmem in acute stimulations. However, B5 Tmem did not accumulate more than naive B5 T cells in vivo or in vitro and became apoptotic. Failure to accumulate was partly the result of chronic stimulation, since eliminating persistent parasites before reinfection slightly increased the accumulation of B5 Tg T cells upon reinfection. The levels of specific gamma interferon-positive, interleukin-10-positive T cells, which protect animals from pathology, increased after malaria infection. These data demonstrate that although chronic infection generates a protective T cell population with increased TCR sensitivity and cytokine production, they do not reexpand upon reexposure due to increased apoptosis.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Malaria/inmunología , Malaria/parasitología , Plasmodium chabaudi/inmunología , Animales , Apoptosis/inmunología , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/metabolismo , Epítopos de Linfocito T/inmunología , Femenino , Interleucina-10/biosíntesis , Activación de Linfocitos/inmunología , Malaria/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Células TH1/inmunología , Células TH1/metabolismo
6.
J Immunol ; 194(11): 5346-54, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25911759

RESUMEN

CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Malaria/inmunología , Plasmodium chabaudi/inmunología , Subgrupos de Linfocitos T/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/citología , Diferenciación Celular/inmunología , Citocinas/biosíntesis , Interferón gamma/biosíntesis , Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Selectina L/metabolismo , Activación de Linfocitos/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Subgrupos de Linfocitos T/citología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
7.
J Immunol ; 195(2): 611-20, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26041535

RESUMEN

B cells play a critical role in the clearance of Pneumocystis. In addition to production of Pneumocystis-specific Abs, B cells are required during the priming phase for CD4(+) T cells to expand normally and generate memory. Clearance of Pneumocystis was found to be dependent on Ag specific B cells and on the ability of B cells to secrete Pneumocystis-specific Ab, as mice with B cells defective in these functions or with a restricted BCR were unable to control Pneumocystis infection. Because Pneumocystis-specific antiserum was only able to partially protect B cell-deficient mice from infection, we hypothesized that optimal T cell priming requires fully functional B cells. Using adoptive transfer and B cell depletion strategies, we determined that optimal priming of CD4(+) T cells requires B cells during the first 2-3 d of infection and that this was independent of the production of Ab. T cells that were removed from Pneumocystis-infected mice during the priming phase were fully functional and able to clear Pneumocystis infection upon adoptive transfer into Rag1(-/-) hosts, but this effect was ablated in mice that lacked fully functional B cells. Our results indicate that T cell priming requires a complete environment of Ag presentation and activation signals to become fully functional in this model of Pneumocystis infection.


Asunto(s)
Anticuerpos Antifúngicos/biosíntesis , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Pneumocystis/inmunología , Neumonía por Pneumocystis/inmunología , Traslado Adoptivo , Animales , Linfocitos B/microbiología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/trasplante , Linfocitos T CD8-positivos/microbiología , Proliferación Celular , Eliminación de Gen , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Inmunidad Humoral , Activación de Linfocitos , Depleción Linfocítica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía por Pneumocystis/microbiología , Neumonía por Pneumocystis/patología , Neumonía por Pneumocystis/terapia
8.
Infect Immun ; 81(11): 4252-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002064

RESUMEN

Pneumocystis species are opportunistic fungal pathogens that induce tumor necrosis factor (TNF) production by alveolar macrophages. Here we report that B cells from the draining lymph nodes as well as lung CD4(+) T cells are important producers of TNF upon Pneumocystis murina infection. To determine the importance of B cell-derived TNF in the primary response to P. murina, we generated bone marrow chimeras whose B cells were unable to produce TNF. The lung P. murina burden at 10 days postinfection in TNF knockout (TNFKO) chimeras was significantly higher than that in wild-type (WT) chimeras, which corresponded to reduced numbers of activated CD4(+) T cells in the lungs at this early time point. Furthermore, CD4(+) T cells isolated from P. murina-infected TNFKO chimeras were unable to stimulate clearance of P. murina upon adoptive transfer to recombinase-deficient (RAG1KO) hosts. Together, these data indicate that B cell-derived TNF plays an important function in promoting CD4(+) T cell expansion and production of TNF and facilitating protection against P. murina infection.


Asunto(s)
Linfocitos B/inmunología , Pneumocystis/inmunología , Neumonía por Pneumocystis/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética
10.
Int J Environ Res Public Health ; 3(2): 174-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16823089

RESUMEN

Breast cancer is the second leading cause of cancer related deaths of women in the United States. Several treatment strategies have been developed over the past decade to reduce cancer morbidity and mortality rates. While mortality rates have declined in some ethnic populations, the overall cancer incidence continues to grow. Hence, chemotherapeutic agents are needed to improve cancer treatment outcome. Previous studies show that low concentrations (microgram/ml) of water-soluble leaf extracts of a Nigerian edible plant, V. amygdalina (VA), potently retard the proliferative activities of estrogen receptor positive (ER+) human breast cancerous cells (MCF-7) cells in vitro in a concentration-dependent fashion. The anti-proliferative activities of VA are extracellular signal-regulated kinases (1/2) (ERKs (1/2))-dependent. Cell culture and animal model studies, conducted by other investigators using other plant extracts, have also revealed that plant extract components called thionins may be responsible for their anticancer activities. These thionins are believed to interact with the cells in ways that compromise membrane potential/permeability resulting in the alteration of efflux, cytosolic activities, and subsequent cell death. Therefore, we hypothesized that VA exposure may compromise cell membrane as another mode of action to elicit its anticancer activities in MCF-7 cells. The exposure of cells to VA decreased [3H]thymidine uptake in a concentration-dependent (0, 30, and 100 mug/ml VA) manner (p < 0.05) but increased [3H]thymidine release, expressed as percent of [3H]thymidine incorporated, into the medium (p < 0.05). The amount of [3H]thymidine released into the medium was 1.7, 7.4, and 11.0 % for 0, 30, and 100 mug/ml VA respectively. Thus suggesting the membranes in VA-treated cells were compromised in a concentration-dependent fashion.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Vernonia/química , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Humanos , Extractos Vegetales/farmacología , Timidina/metabolismo
12.
PLoS One ; 10(12): e0144654, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26646149

RESUMEN

CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL-21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineage-associated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+ IFN-γ+ IL-21+ IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+ IL-21+ CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an effective malaria vaccine.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Memoria Inmunológica , Interferón gamma/fisiología , Interleucinas/fisiología , Malaria/inmunología , Plasmodium chabaudi/patogenicidad , Linfocitos T/inmunología , Animales , Diferenciación Celular , Interferón gamma/biosíntesis , Interleucinas/biosíntesis , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-6 , Linfocitos T/citología
13.
Curr Immunol Rev ; 9(3): 190-206, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24790593

RESUMEN

As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections, increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells, such as the integrated strength of "signals 1-3" of antigen presentation (antigen receptor, co-stimulation, cytokines) as perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory T cells at early time points has masked this important decision point. This does not rule out an effect of repeated stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much debated since.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA