Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Pathol ; 261(2): 169-183, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37555366

RESUMEN

Intravascular hemolysis is a common feature of different clinical entities, including sickle cell disease and malaria. Chronic hemolytic disorders are associated with hepatic damage; however, it is unknown whether heme disturbs lipid metabolism and promotes liver steatosis, thereby favoring the progression to nonalcoholic fatty liver disease (NAFLD). Using an experimental model of acute intravascular hemolysis, we report here the presence of liver injury in association with microvesicular lipid droplet deposition. Hemolysis promoted serum hyperlipidemia and altered intrahepatic triglyceride fatty acid composition, with increments in oleic, palmitoleic, and palmitic acids. These findings were related to augmented expression of transporters involved in fatty acid uptake (CD36 and MSR1) and deregulation of LDL transport, as demonstrated by decreased levels of LDL receptor and increased PCSK9 expression. Hemolysis also upregulated hepatic enzymes associated with cholesterol biosynthesis (SREBP2, HMGC1, LCAT, SOAT1) and transcription factors regulating lipid metabolism (SREBP1). Increased LC3II/LC3I ratio and p62/SQSTM1 protein levels were reported in mice with intravascular hemolysis and hepatocytes stimulated with heme, indicating a blockade of lipophagy. In cultured hepatocytes, cell pretreatment with the autophagy inductor rapamycin diminished heme-mediated toxicity and accumulation of lipid droplets. In conclusion, intravascular hemolysis enhances liver damage by exacerbating lipid accumulation and blocking the lipophagy pathway, thereby promoting NAFLD. These new findings have a high translational potential as a novel NAFLD-promoting mechanism in individuals suffering from severe hemolysis episodes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Proproteína Convertasa 9/metabolismo , Metabolismo de los Lípidos , Hemólisis , Hígado/patología , Hepatocitos/patología , Ácidos Grasos/metabolismo , Autofagia , Hemo/metabolismo , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474208

RESUMEN

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent clinical condition associated with elevated morbidity and mortality rates. Patients with MASLD treated with semaglutide, a glucagon-like peptide-1 receptor agonist, demonstrate improvement in terms of liver damage. However, the mechanisms underlaying this beneficial effect are not yet fully elucidated. We investigated the efficacy of semaglutide in halting MASLD progression using a genetic mouse model of diabesity. Leptin-receptor-deficient mice with obesity and diabetes (BKS db/db) were either untreated or administered with semaglutide for 11 weeks. Changes in food and water intake, body weight and glycemia were monitored throughout the study. Body fat composition was assessed by dual-energy X-ray absorptiometry. Upon sacrifice, serum biochemical parameters, liver morphology, lipidomic profile and liver-lipid-related pathways were evaluated. The semaglutide-treated mice exhibited lower levels of glycemia, body weight, serum markers of liver dysfunction and total and percentage of fat mass compared to untreated db/db mice without a significant reduction in food intake. Histologically, semaglutide reduced hepatic steatosis, hepatocellular ballooning and intrahepatic triglycerides. Furthermore, the treatment ameliorated the hepatic expression of de novo lipogenesis markers and modified lipid composition by increasing the amount of polyunsaturated fatty acids. The administration of semaglutide to leptin-receptor-deficient, hyperphagic and diabetic mice resulted in the amelioration of MASLD, likely independently of daily caloric intake, suggesting a direct effect of semaglutide on the liver through modulation of the lipid profile.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hígado Graso , Péptidos Similares al Glucagón , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Lipogénesis , Leptina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hígado Graso/metabolismo , Obesidad/metabolismo , Hígado/metabolismo , Peso Corporal , Triglicéridos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones Obesos
3.
J Pathol ; 258(3): 236-249, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35903022

RESUMEN

Massive intravascular hemolysis is a common characteristic of several pathologies. It is associated with the release of large quantities of heme into the circulation, promoting injury in vulnerable organs, mainly kidney, liver, and spleen. Heme activates Toll-like receptor 4 (TLR4), a key regulator of the inflammatory response; however, the role of TLR4 in hemolysis and whether inhibition of this receptor may protect from heme-mediated injury are unknown. We induced intravascular hemolysis by injection of phenylhydrazine in wildtype and Tlr4-knockout mice. In this model, we analyzed physiological parameters, histological damage, inflammation and cell death in kidney, liver, and spleen. We also evaluated whether heme-mediated-inflammatory effects were prevented by TLR4 inhibition with the compound TAK-242, both in vivo and in vitro. Induction of massive hemolysis elicited acute kidney injury characterized by loss of renal function, morphological alterations of the tubular epithelium, cell death, and inflammation. These pathological effects were significantly ameliorated in the TLR4-deficient mice and in wildtype mice treated with TAK-242. In vitro studies showed that TAK-242 pretreatment reduced heme-mediated inflammation by inhibiting the TLR4/NF-κB (nuclear factor kappa B) axis. However, analysis in liver and spleen indicated that TLR4 deficiency did not protect against the toxic accumulation of heme in these organs. In conclusion, TLR4 is a key molecule involved in the renal inflammatory response triggered by massive intravascular hemolysis. TLR4 inhibition may be a potential therapeutic approach to prevent renal damage in patients suffering from hemolysis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hemólisis , Receptor Toll-Like 4 , Animales , Modelos Animales de Enfermedad , Hemo/metabolismo , Inflamación , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Fenilhidrazinas/farmacología , Sulfonamidas , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409324

RESUMEN

Metabolic associated fatty liver disease (MAFLD) is a hepatic manifestation of metabolic syndrome and usually associated with obesity and diabetes. Our aim is to characterize the pathophysiological mechanism involved in MAFLD development in Black Tan and brachyuric (BTBR) insulin-resistant mice in combination with leptin deficiency (ob/ob). We studied liver morphology and biochemistry on our diabetic and obese mice model (BTBR ob/ob) as well as a diabetic non-obese control (BTBR + streptozotocin) and non-diabetic control mice (BTBR wild type) from 4-22 weeks. Lipid composition was assessed, and lipid related pathways were studied at transcriptional and protein level. Microvesicular steatosis was evident in BTBR ob/ob from week 6, progressing to macrovesicular in the following weeks. At 12th week, inflammatory clusters, activation of STAT3 and Nrf2 signaling pathways, and hepatocellular ballooning. At 22 weeks, the histopathological features previously observed were maintained and no signs of fibrosis were detected. Lipidomic analysis showed profiles associated with de novo lipogenesis (DNL). BTBR ob/ob mice develop MAFLD profile that resemble pathological features observed in humans, with overactivation of inflammatory response, oxidative stress and DNL signaling pathways. Therefore, BTBR ob/ob mouse is an excellent model for the study of the steatosis to steatohepatitis transition.


Asunto(s)
Hígado Graso , Lipogénesis , Animales , Biomarcadores/metabolismo , Progresión de la Enfermedad , Hígado Graso/metabolismo , Inflamación/patología , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Obesos , Obesidad/metabolismo
5.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467524

RESUMEN

Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.


Asunto(s)
Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/terapia , Terapia de Reemplazo Renal/métodos , Receptores Toll-Like/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Riñón/metabolismo , Riñón/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/terapia , Factores de Riesgo , Receptor Toll-Like 4/metabolismo
6.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290082

RESUMEN

Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.


Asunto(s)
Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Susceptibilidad a Enfermedades , Metabolismo de los Lípidos , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Toma de Decisiones Clínicas , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/terapia , Manejo de la Enfermedad , Dislipidemias/sangre , Dislipidemias/complicaciones , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/metabolismo , Glucógeno/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Mitocondrias/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Pronóstico , Transducción de Señal
7.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545818

RESUMEN

Diabetic nephropathy (DN) is a multifactorial disease characterized by hyperglycemia and close interaction of hemodynamic, metabolic and inflammatory factors. Nuclear factor-κB (NF-κB) is a principal matchmaker linking hyperglycemia and inflammation. The present work investigates the cell-permeable peptide containing the inhibitor of kappa B kinase γ (IKKγ)/NF-κB essential modulator (NEMO)-binding domain (NBD) as therapeutic option to modulate inflammation in a preclinical model of type 2 diabetes (T2D) with DN. Black and tan, brachyuric obese/obese mice were randomized into 4 interventions groups: Active NBD peptide (10 and 6 µg/g body weight); Inactive mutant peptide (10 µg/g); and vehicle control. In vivo/ex vivo fluorescence imaging revealed efficient delivery of NBD peptide, systemic biodistribution and selective renal metabolization. In vivo administration of active NBD peptide improved albuminuria (>40% reduction on average) and kidney damage, decreased podocyte loss and basement membrane thickness, and modulated the expression of proinflammatory and oxidative stress markers. In vitro, NBD blocked IKK-mediated NF-κB induction and target gene expression in mesangial cells exposed to diabetic-like milieu. These results constitute the first nephroprotective effect of NBD peptide in a T2D mouse model that recapitulates the kidney lesions observed in DN patients. Targeting IKK-dependent NF-κB activation could be a therapeutic strategy to combat kidney inflammation in DN.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/química , Albúmina Sérica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Sitios de Unión , Línea Celular , Péptidos de Penetración Celular/farmacología , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/diagnóstico por imagen , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Distribución Aleatoria , Distribución Tisular , Resultado del Tratamiento
8.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471207

RESUMEN

Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.


Asunto(s)
Antiinflamatorios/uso terapéutico , Nefropatías Diabéticas/metabolismo , Hipoglucemiantes/uso terapéutico , Inmunosupresores/uso terapéutico , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/inmunología , Humanos
10.
Front Pharmacol ; 13: 778776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370692

RESUMEN

Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide. Although remarkable therapeutic advances have been made during the last few years, there still exists a high residual risk of disease progression to end-stage renal failure. To further understand the pathogenesis of tissue injury in this disease, by means of the Next-Generation Sequencing, we have studied the microRNA (miRNA) differential expression pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation) mouse. This experimental model of type 2 diabetes and obesity recapitulates the key histopathological features described in advanced human DN and therefore can provide potential useful translational information. The miRNA-seq analysis, performed in the renal cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly increased compared to non-diabetic, non-obese control mice of the same age, whereas no miRNAs were significantly decreased. Among them, miR-802, miR-34a, miR-132, miR-101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune processes, as the most relevant pathways, emphasizing the importance of inflammation in the pathogenesis of kidney damage associated to diabetes. Other identified top canonical pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition, the latter supporting the importance of tubular cell phenotype changes in the pathogenesis of DN. These findings could facilitate a better understanding of this complex disease and potentially open new avenues for the design of novel therapeutic approaches to DN.

11.
Antioxidants (Basel) ; 11(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36552707

RESUMEN

In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of the synthetic flavonoid hidrosmin on endothelial dysfunction and atherogenesis. In a type 2 diabetes model of leptin-receptor-deficient (db/db) mice, orally administered hidrosmin (600 mg/kg/day) for 16 weeks markedly improved vascular function in aorta and mesenteric arteries without affecting vascular structural properties, as assessed by wire and pressure myography. In streptozotocin-induced type 1 diabetic apolipoprotein E-deficient mice, hidrosmin treatment for 7 weeks reduced atherosclerotic plaque size and lipid content; increased markers of plaque stability; and decreased markers of inflammation, senescence and oxidative stress in aorta. Hidrosmin showed cardiovascular safety, as neither functional nor structural abnormalities were noted in diabetic hearts. Ex vivo, hidrosmin induced vascular relaxation that was blocked by nitric oxide synthase (NOS) inhibition. In vitro, hidrosmin stimulated endothelial NOS activity and NO production and downregulated hyperglycemia-induced inflammatory and oxidant genes in vascular smooth muscle cells. Our results highlight hidrosmin as a potential add-on therapy in the treatment of macrovascular complications of diabetes.

12.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34943023

RESUMEN

Diabetes mellitus (DM) is a high-impact disease commonly characterized by hyperglycemia, inflammation, and oxidative stress. Diabetic nephropathy (DN) is a common diabetic microvascular complication and the leading cause of chronic kidney disease worldwide. This study investigates the protective effects of the synthetic flavonoid hidrosmin (5-O-(beta-hydroxyethyl) diosmin) in experimental DN induced by streptozotocin injection in apolipoprotein E deficient mice. Oral administration of hidrosmin (300 mg/kg/day, n = 11) to diabetic mice for 7 weeks markedly reduced albuminuria (albumin-to-creatinine ratio: 47 ± 11% vs. control) and ameliorated renal pathological damage and expression of kidney injury markers. Kidneys of hidrosmin-treated mice exhibited lower content of macrophages and T cells, reduced expression of cytokines and chemokines, and attenuated inflammatory signaling pathways. Hidrosmin treatment improved the redox balance by reducing prooxidant enzymes and enhancing antioxidant genes, and also decreased senescence markers in diabetic kidneys. In vitro, hidrosmin dose-dependently reduced the expression of inflammatory and oxidative genes in tubuloepithelial cells exposed to either high-glucose or cytokines, with no evidence of cytotoxicity at effective concentrations. In conclusion, the synthetic flavonoid hidrosmin exerts a beneficial effect against DN by reducing inflammation, oxidative stress, and senescence pathways. Hidrosmin could have a potential role as a coadjutant therapy for the chronic complications of DM.

13.
Artículo en Inglés | MEDLINE | ID: mdl-32900697

RESUMEN

INTRODUCTION: Diabetic nephropathy (DN) is the leading cause of chronic kidney disease worldwide. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway participates in the development and progression of DN. Among the different mechanisms involved in JAK/STAT negative regulation, the family of suppressor of cytokine signaling (SOCS) proteins has been proposed as a new target for DN. Our aim was to evaluate the effect of SOCS1 mimetic peptide in a mouse model of obesity and type 2 diabetes (T2D) with progressive DN. RESEARCH DESIGN AND METHODS: Six-week-old BTBR (black and tan brachyuric) mice with the ob/ob (obese/obese) leptin-deficiency mutation were treated for 7 weeks with two different doses of active SOCS1 peptide (MiS1 2 and 4 µg/g body weight), using inactive mutant peptide (Mut 4 µg) and vehicle as control groups. At the end of the study, the animals were sacrificed to obtain blood, urine and kidney tissue for further analysis. RESULTS: Treatment of diabetic mice with active peptide significantly decreased urine albumin to creatinine ratio by up to 50%, reduced renal weight, glomerular and tubulointerstitial damage, and restored podocyte numbers. Kidneys from treated mice exhibited lower inflammatory infiltrate, proinflammatory gene expression and STAT activation. Concomitantly, active peptide administration modulated redox balance markers and reduced lipid peroxidation and cholesterol transporter gene expression in diabetic kidneys. CONCLUSION: Targeting SOCS proteins by mimetic peptides to control JAK/STAT signaling pathway ameliorates albuminuria, morphological renal lesions, inflammation, oxidative stress and lipotoxicity, and could be a therapeutic approach to T2D kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Antiinflamatorios , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas
14.
J Clin Med ; 9(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012726

RESUMEN

Diabetes mellitus (DM), and its micro and macrovascular complications, is one of the biggest challenges for world public health. Despite overall improvement in prevention, diagnosis and treatment, its incidence is expected to continue increasing over the next years. Nowadays, finding therapies to prevent or retard the progression of diabetic complications remains an unmet need due to the complexity of mechanisms involved, which include inflammation, oxidative stress and angiogenesis, among others. Flavonoids are natural antioxidant compounds that have been shown to possess anti-diabetic properties. Moreover, increasing scientific evidence has demonstrated their potential anti-inflammatory and anti-oxidant effects. Consequently, the use of these compounds as anti-diabetic drugs has generated growing interest, as is reflected in the numerous in vitro and in vivo studies related to this field. Therefore, the aim of this review is to assess the recent pre-clinical and clinical research about the potential effect of flavonoids in the amelioration of diabetic complications. In brief, we provide updated information concerning the discrepancy between the numerous experimental studies supporting the efficacy of flavonoids on diabetic complications and the lack of appropriate and well-designed clinical trials. Due to the well-described beneficial effects on different mechanisms involved in diabetic complications, the excellent tolerability and low cost, future randomized controlled studies with compounds that have adequate bioavailability should be evaluated as add-on therapy on well-established anti-diabetic drugs.

15.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396350

RESUMEN

Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.

16.
J Clin Med ; 9(1)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963845

RESUMEN

Chronic kidney disease has become a major medical issue in recent years due to its high prevalence worldwide, its association with premature mortality, and its social and economic implications. A number of patients gradually progress to end-stage renal disease (ESRD), requiring then dialysis and kidney transplantation. Currently, approximately 40% of patients with diabetes develop kidney disease, making it the most prevalent cause of ESRD. Thus, more effective therapies for diabetic nephropathy are needed. In preclinical studies of diabetes, anti-inflammatory therapeutic strategies have been used to protect the kidneys. Recent evidence supports that immune cells play an active role in the pathogenesis of diabetic nephropathy. Th17 immune cells and their effector cytokine IL-17A have recently emerged as promising targets in several clinical conditions, including renal diseases. Here, we review current knowledge regarding the involvement of Th17/IL-17A in the genesis of diabetic renal injury, as well as the rationale behind targeting IL-17A as an additional therapy in patients with diabetic nephropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA