Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362410

RESUMEN

Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.


Asunto(s)
Astrocitos , Conexina 43 , Ratas , Animales , Conexina 43/metabolismo , Astrocitos/metabolismo , Receptores de GABA-A , Bicuculina/farmacología , Animales Recién Nacidos , Células Cultivadas , Ácido Glutámico/farmacología , Ácido gamma-Aminobutírico/farmacología , Adenosina Trifosfato/farmacología
2.
Proc Natl Acad Sci U S A ; 111(46): E4972-80, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368174

RESUMEN

The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-ß-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology.


Asunto(s)
HDL-Colesterol/metabolismo , Colesterol/toxicidad , Infertilidad Femenina/etiología , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Receptores Depuradores de Clase B/deficiencia , Animales , Supervivencia Celular , Ácido Egtácico/farmacología , Femenino , Sistema de Señalización de MAP Quinasas , Meiosis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Cuerpos Polares , Receptores Depuradores de Clase B/fisiología , Estroncio/farmacología , beta-Ciclodextrinas/farmacología
3.
J Neurochem ; 128(5): 752-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24134157

RESUMEN

Human immunodeficiency virus-1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV-infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV-infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV-induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf-1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1-dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC-dependent mechanism that contributes to the brain pathogenesis observed in HIV-infected individuals. Our studies demonstrated that HIV infection of astrocytes, despite minimal replication and a low number of infected cells, induces dysregulation of DKK1 secretion by a Cx43 hemichannel (HC)-dependent mechanism. Enhanced DKK1 secretion in response to HIV infection of glial cells compromised formation and stability of neuronal processes, similar to the synaptic compromise observed in HIV-infected individuals. In addition, analysis of human brain tissue sections obtained from encephalitic individuals also shows enhanced expression of DKK1 in astrocytes. Our data provide a novel mechanism by which HIV infection of glial cells participate in the pathogenesis of brain dysfunction observed in HIV-infected individuals. LRP5 = Low-density lipoprotein receptor-related protein 5.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Infecciones por VIH/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Complejo SIDA Demencia/metabolismo , Complejo SIDA Demencia/patología , Apoptosis/fisiología , Astrocitos/virología , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Uniones Comunicantes/metabolismo , Proteína p24 del Núcleo del VIH/metabolismo , Humanos , Microscopía Fluorescente , Neuronas/metabolismo , Cultivo Primario de Células , Receptores de Quimiocina/metabolismo , Regulación hacia Arriba , Proteínas Wnt/metabolismo
4.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740042

RESUMEN

Multiple sclerosis (MS) encompasses a chronic, irreversible, and predominantly immune-mediated disease of the central nervous system that leads to axonal degeneration, neuronal death, and several neurological symptoms. Although various immune therapies have reduced relapse rates and the severity of symptoms in relapsing-remitting MS, there is still no cure for this devastating disease. In this brief review, we discuss the role of mitochondria dysfunction in the progression of MS, focused on the possible role of Nrf2 signaling in orchestrating the impairment of critical cellular and molecular aspects such as reactive oxygen species (ROS) management, under neuroinflammation and neurodegeneration in MS. In this scenario, we propose a new potential downstream signaling of Nrf2 pathway, namely the opening of hemichannels and pannexons. These large-pore channels are known to modulate glial/neuronal function and ROS production as they are permeable to extracellular Ca2+ and release potentially harmful transmitters to the synaptic cleft. In this way, the Nrf2 dysfunction impairs not only the bioenergetics and metabolic properties of glial cells but also the proper antioxidant defense and energy supply that they provide to neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA