Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Photosynth Res ; 151(1): 11-30, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480322

RESUMEN

The anoxygenic phototrophic bacterium Heliobacterium modesticaldum contains a photochemical reaction center protein complex (called the HbRC) consisting of a homodimer of the PshA polypeptide and two copies of a newly discovered polypeptide called PshX, which is a single transmembrane helix that binds two bacteriochlorophyll g molecules. To assess the function of PshX, we produced a ∆pshX strain of Hbt. modesticaldum by leveraging the endogenous Hbt. modesticaldum Type I-A CRISPR-Cas system to aid in mutant selection. We optimized this system by separating the homologous recombination and CRISPR-based selection steps into two plasmid transformations, allowing for markerless gene replacement. Fluorescence and low-temperature absorbance of the purified HbRC from the wild-type and ∆pshX strains showed that the bacteriochlorophylls bound by PshX have the lowest site energies in the entire HbRC. This indicates that PshX acts as a low-energy antenna subunit, participating in entropy-assisted uphill energy transfer toward the P800 special bacteriochlorophyll g pair. We further discuss the role that PshX may play in stability of the HbRC, its conservation in other heliobacterial species, and the evolutionary pressure to produce and maintain single-TMH subunits in similar locations in other reaction centers.


Asunto(s)
Bacterioclorofilas , Clostridiales
2.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375483

RESUMEN

The heliobacteria are members of the bacterial order Clostridiales and form the only group of phototrophs in the phylum Firmicutes Several physiological and metabolic characteristics make them an interesting subject of investigation, including their minimalist photosynthetic system, nitrogen fixation abilities, and ability to reduce toxic metals. While the species Heliobacterium modesticaldum is an excellent candidate as a model system for the family Heliobacteriaceae, since an annotated genome and transcriptomes are available, studies in this organism have been hampered by the lack of genetic tools. We adapted techniques for genetic manipulation of related clostridial species for use with H. modesticaldum Five heliobacterial DNA methyltransferase genes were expressed in an Escherichia coli strain engineered as a conjugative plasmid donor for broad-host-range plasmids. Premethylation of the shuttle vectors before conjugation into H. modesticaldum is absolutely required for production of transconjugant colonies. The introduced shuttle vectors are maintained stably and can be recovered using a modified minipreparation procedure developed to inhibit endogenous DNase activity. Furthermore, we describe the formulation of various growth media, including a defined medium for metabolic studies and isolation of auxotrophic mutants.IMPORTANCE Heliobacteria are anoxygenic phototrophic bacteria with the simplest known photosynthetic apparatus. They are unique in using bacteriochlorophyll g as their main pigment and lacking a peripheral antenna system. Until now, research on this organism has been hampered by the lack of a genetic transformation system. Without such a system, gene knockouts, site-directed mutations, and gene expression studies cannot be performed to help us further understand or manipulate the organism. Here we report the genetic transformation of a heliobacterium, which should enable future genetic studies in this unique phototrophic organism.


Asunto(s)
Clostridiales/genética , Medios de Cultivo/química , Ingeniería Genética/métodos , Metiltransferasas/genética , Transformación Genética , Clostridiales/crecimiento & desarrollo , Clostridiales/metabolismo , Metilación de ADN/genética , Escherichia coli/genética , Fijación del Nitrógeno , Fotosíntesis , Plásmidos/genética
3.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540988

RESUMEN

In Heliobacterium modesticaldum, as in many Firmicutes, deleting genes by homologous recombination using standard techniques has been extremely difficult. The cells tend to integrate the introduced plasmid into the chromosome by a single recombination event rather than perform the double recombination required to replace the targeted locus. Transformation with a vector containing only a homologous recombination template for replacement of the photochemical reaction center gene pshA produced colonies with multiple genotypes, rather than a clean gene replacement. To address this issue, we required an additional means of selection to force a clean gene replacement. In this study, we report the genetic structure of the type I-A and I-E CRISPR-Cas systems from H. modesticaldum, as well as methods to leverage the type I-A system for genome editing. In silico analysis of the CRISPR spacers revealed a potential consensus protospacer adjacent motif (PAM) required for Cas3 recognition, which was then tested using an in vivo interference assay. Introduction of a homologous recombination plasmid that carried a miniature CRISPR array targeting sequences in pshA (downstream of a naturally occurring PAM sequence) produced nonphototrophic transformants with clean replacements of the pshA gene with ∼80% efficiency. Mutants were confirmed by PCR, sequencing, optical spectroscopy, and growth characteristics. This methodology should be applicable to any genetic locus in the H. modesticaldum genome.IMPORTANCE The heliobacteria are the only phototrophic members of the largely Gram-positive phylum Firmicutes, which contains medically and industrially important members, such as Clostridium difficile and Clostridium acetobutylicum Heliobacteria are of interest in the study of photosynthesis because their photosynthetic system is unique and the simplest known. Since their discovery in the early 1980s, work on the heliobacteria has been hindered by the lack of a genetic transformation system. The problem of introducing foreign DNA into these bacteria has been recently rectified by our group; however, issues still remained for efficient genome editing. The significance of this work is that we have characterized the endogenous type I CRISPR-Cas system in the heliobacteria and leveraged it to assist in genome editing. Using the CRISPR-Cas system allowed us to isolate transformants with precise replacement of the pshA gene encoding the main subunit of the photochemical reaction center.


Asunto(s)
Sistemas CRISPR-Cas , Clostridiales/genética , Genes Bacterianos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Procesos Fotoquímicos
4.
Photosynth Res ; 142(3): 335-348, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31542861

RESUMEN

The heliobacterial photochemical reaction center (HbRC) from the chlorophototrophic Firmicutes bacterium Heliobacterium modesticaldum is the only homodimeric type I RC whose structure is known. Using genetic techniques recently established in our lab, we have developed a rapid heterologous expression system for the HbRC core polypeptide PshA. Our system relies on rescue of the non-chlorophototrophic ∆pshA::cbp2p-aph3 strain of Hbt. modesticaldum by expression of a heterologous pshA gene from a replicating shuttle vector. In addition, we constructed two tagged variants of PshA, one with an N-terminal octahistidine tag and one with an internal hexahistidine tag, which facilitate rapid purification of pure, active HbRC cores in milligram quantities. We constructed a suite of shuttle vectors bearing untagged or tagged versions of pshA driven by various promoters. Surprisingly, we found that the eno and gapDH_2 promoters from Clostridium thermocellum drive better expression of pshA than fragments of DNA derived from the region upstream of the pshA locus on the Hbt. modesticaldum genome. This "pshA rescue" strategy also provided a useful window into how Hbt. modesticaldum regulates pigment synthesis and growth rate when chlorophototrophic output decreases.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Clostridiales/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Bacterianas/genética , Clostridiales/metabolismo , Histidina/genética , Microorganismos Modificados Genéticamente , Chaperonas Moleculares , Procesos Fotoquímicos , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Pigmentos Biológicos , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética
5.
Proc Natl Acad Sci U S A ; 113(31): E4486-93, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27335466

RESUMEN

Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna-Matthews-Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlorobi/metabolismo , Cisteína/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Aerobiosis , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Chlorobi/genética , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Transporte de Electrón/genética , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Homología de Secuencia de Aminoácido
6.
Photosynth Res ; 138(1): 11-37, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29603081

RESUMEN

The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.


Asunto(s)
Proteínas Bacterianas/química , Evolución Molecular , Complejo de Proteína del Fotosistema I/química , Filogenia , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Clostridiales/química , Clostridiales/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Multimerización de Proteína , Quinonas/química , Quinonas/metabolismo
7.
Biochim Biophys Acta ; 1857(9): 1455-1463, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27114180

RESUMEN

The Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria transfers excitation energy from the chlorosome antenna complex to the reaction center. In understanding energy transfer in the FMO protein, the individual contributions of the bacteriochlorophyll pigments to the FMO complex's absorption spectrum could provide detailed information with which molecular and energetic models can be constructed. The absorption properties of the pigments, however, are such that their spectra overlap significantly. To overcome this, we used site-directed mutagenesis to construct a series of mutant FMO complexes in the model green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum). Two cysteines at positions 49 and 353 in the C. tepidum FMO complex, which reside near hydrogen bonds between BChls 2 and 3, and their amino acid binding partner serine 73 and tyrosine 15, respectively, were changed to alanine residues. The resulting C49A, C353A, and C49A C353A double mutants were analyzed with a combination of optical absorption and circular dichroism (CD) spectroscopies. Our results revealed changes in the absorption properties of several underlying spectral components in the FMO complex, as well as the redox behavior of the complex in response to the reductant sodium dithionite. A high-resolution X-ray structure of the C49A C353A double mutant reveals that these spectral changes appear to be independent of any major structural rearrangements in the FMO mutants. Our findings provide important tests for theoretical calculations of the C. tepidum FMO absorption spectrum, and additionally highlight a possible role for cysteine residues in the redox activity of the pigment-protein complex.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Complejos de Proteína Captadores de Luz/química , Dicroismo Circular , Cisteína/química , Conformación Proteica
8.
Langmuir ; 33(25): 6427-6438, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28585832

RESUMEN

Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.


Asunto(s)
Nanocompuestos , Proteínas Bacterianas , Bacterioclorofilas , Transferencia de Energía , Orgánulos , Polímeros
9.
Biochemistry ; 55(7): 1003-9, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26848988

RESUMEN

Photosynthetic cyanobacteria make important contributions to global carbon and nitrogen budgets. A protein known as the orange carotenoid protein (OCP) protects the photosynthetic apparatus from damage by dissipating excess energy absorbed by the phycobilisome, the major light-harvesting complex in many cyanobacteria. OCP binds one carotenoid pigment, but the color of this pigment depends on conditions. It is orange in the dark and red when exposed to light. We modified the orange and red forms of OCP by using isotopically coded cross-linking agents and then analyzed the structural features by using liquid chromatography and tandem mass spectrometry. Unequivocal cross-linking pairs uniquely detected in red OCP indicate that, upon photoactivation, the OCP N-terminal domain (NTD) and C-terminal domain (CTD) reorient relative to each other. Our data also indicate that the intrinsically unstructured loop connecting the NTD and CTD not only is involved in the interaction between the two domains in orange OCP but also, together with the N-terminal extension, provides a structural buffer system facilitating an intramolecular breathing motion of the OCP, thus helping conversion back and forth from the orange to red form during the OCP photocycle. These results have important implications for understanding the molecular mechanism of action of cyanobacterial photoprotection.


Asunto(s)
Proteínas Bacterianas/química , Carotenoides/química , Modelos Moleculares , Synechocystis/metabolismo , Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Carotenoides/efectos de la radiación , Cromatografía Líquida de Alta Presión , Reactivos de Enlaces Cruzados/química , Dimerización , Ligandos , Luz , Peso Molecular , Mapeo Peptídico , Procesos Fotoquímicos , Replegamiento Proteico/efectos de la radiación , Estructura Terciaria de Proteína/efectos de la radiación , Espectrometría de Masas en Tándem
10.
Biochim Biophys Acta ; 1837(11): 1904-1912, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25150185

RESUMEN

The chlorophyll a-chlorophyll c2-peridinin-protein (apcPC), a major light harvesting component in peridinin-containing dinoflagellates, is an integral membrane protein complex. We isolated functional acpPC from the dinoflagellate Symbiodinium. Both SDS-PAGE and electrospray ionization mass spectrometry (ESI-MS) analysis quantified the denatured subunit polypeptide molecular weight (MW) as 18kDa. Size-exclusion chromatography (SEC) and blue native gel electrophoresis (BN-PAGE) were employed to estimate the size of native acpPC complex to be 64-66kDa. We also performed native ESI-MS, which can volatilize and ionize active biological samples in their native states. Our result demonstrated that the native acpPC complex carried 14 to 16 positive charges, and the MW of acpPC with all the associated pigments was found to be 66.5kDa. Based on these data and the pigment stoichiometry, we propose that the functional light harvesting state of acpPC is a trimer. Our bioinformatic analysis indicated that Symbiodinium acpPC shares high similarity to diatom fucoxanthin Chl a/c binding protein (FCP), which tends to form a trimer. Additionally, acpPC protein sequence variation was confirmed by de novo protein sequencing. Its sequence heterogeneity is also discussed in the context of Symbiodinium eco-physiological adaptations.

11.
Biochim Biophys Acta ; 1827(4): 493-501, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23353102

RESUMEN

Chlorosomes are light-harvesting antenna complexes that occur in green photosynthetic bacteria which have only been shown naturally to contain bacteriochlorophyll (BChl) c, d, or e as the principal light-harvesting pigments. BChl f has long been thought to be an obvious fourth member of the so-called Chlorobium chlorophylls, because it possesses a C-7 formyl group like BChl e and lacks a methyl group at C-20 like BChl d. In organisms that synthesize BChl c or e, the bchU gene product encodes the enzyme that methylates the C-20 position of these molecules. A bchU null mutant of the green sulfur bacterium Chlorobaculum limnaeum strain 1677(T), which normally synthesizes BChl e, has recently been generated via insertional inactivation, and it produces chlorosomes containing BChl f [Vogl et al., 2012]. In this study, chlorosomes containing BChl f and monomeric BChl f in pyridine were characterized using a variety of spectroscopic techniques, including fluorescence emission and excitation spectroscopy, fluorescence lifetime and quantum yield determinations, and circular dichroism. These spectroscopic measurements, as well as Gaussian simulation of the data, show that chlorosomes containing BChl f are less efficient in energy transfer than those with BChl e. This can primarily be attributed to the decreased spectral overlap between the oligomeric BChl f (energy donor) fluorescence emission and the BChl a (energy acceptor) absorption in the chlorosome baseplate. This study allows us to hypothesize that, if they exist in nature, BChl f-containing organisms most likely live in rare high-light, anoxic conditions devoid of Chl a, d, or BChl e filtering. ABSTRACT REFERENCE: K. Vogl, M. Tank, G.S. Orf, R.E. Blankenship, D.A. Bryant, Bacteriochlorophyll f: properties of chlorosomes containing the "forbidden chlorophyll," Front. Microbiol. 3 (2012) 298.


Asunto(s)
Bacterioclorofila A/química , Bacterioclorofilas/química , Chlorobi/metabolismo , Chlorobium/química , Bacterioclorofila A/metabolismo , Bacterioclorofilas/genética , Bacterioclorofilas/metabolismo , Chlorobium/metabolismo , Dicroismo Circular , Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia , Mutagénesis Sitio-Dirigida , Mutación/genética , Espectrometría de Fluorescencia
12.
Front Microbiol ; 15: 1362714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655084

RESUMEN

Introduction: Acute febrile illnesses (AFI) in developing tropical and sub-tropical nations are challenging to diagnose due to the numerous causes and non-specific symptoms. The proliferation of rapid diagnostic testing and successful control campaigns against malaria have revealed that non-Plasmodium pathogens still contribute significantly to AFI burden. Thus, a more complete understanding of local trends and potential causes is important for selecting the correct treatment course, which in turn will reduce morbidity and mortality. Next-generation sequencing (NGS) in a laboratory setting can be used to identify known and novel pathogens in individuals with AFI. Methods: In this study, plasma was collected from 228 febrile patients tested negative for malaria at clinics across Senegal from 2020-2022. Total nucleic acids were extracted and converted to metagenomic NGS libraries. To identify viral pathogens, especially those present at low concentration, an aliquot of each library was processed with a viral enrichment panel and sequenced. Corresponding metagenomic libraries were also sequenced to identify non-viral pathogens. Results and Discussion: Sequencing reads for pathogens with a possible link to febrile illness were identified in 51/228 specimens, including (but not limited to): Borrelia crocidurae (N = 7), West Nile virus (N = 3), Rickettsia felis (N = 2), Bartonella quintana (N = 1), human herpesvirus 8 (N = 1), and Saffold virus (N = 1). Reads corresponding to Plasmodium falciparum were detected in 19 specimens, though their presence in the cohort was likely due to user error of rapid diagnostic testing or incorrect specimen segregation at the clinics. Mosquito-borne pathogens were typically detected just after the conclusion of the rainy season, while tick-borne pathogens were mostly detected before the rainy season. The three West Nile virus strains were phylogenetically characterized and shown to be related to both European and North American clades. Surveys such as this will increase the understanding of the potential causes of non-malarial AFI, which may help inform diagnostic and treatment options for clinicians who provide care to patients in Senegal.

13.
Infect Genet Evol ; 124: 105667, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251076

RESUMEN

In April 2023, an outbreak of acute hepatitis was reported amongst internally displaced persons in the Nazareth community of South Sudan. IgM serology-based screening suggested the likely etiologic agent to be Hepatitis E virus (HEV). In this study, plasma specimens collected from anti-HEV IgM-positive cases were subjected to additional RT-qPCR testing and sequencing of extracted nucleic acids, resulting in the recovery of five full and eight partial HEV genomes. Maximum likelihood phylogenetic reconstruction confirmed the genomes belong to HEV genotype 1. Using distance-based methods, we show that genotype 1 is best split into three sub-genotypes instead of the previously proposed seven, and that these sub-genotypes are geographically restricted. The South Sudanese sequences confidently cluster within sub-genotype 1e, endemic to northeast, central, and east Africa. Bayesian Inference of phylogeny incorporating sampling dates shows that this new outbreak is not directly descended from other recent local outbreaks for which sequence data is available. However, the analysis suggests that sub-genotype 1e has been consistently and cryptically circulating locally for at least the past half century and that the known outbreaks are often not directly descended from one another. The ongoing presence of HEV, combined with poor sanitation and hygiene in the conflict-affected areas in the region, place vulnerable populations at risk for infection and its more serious effects, including progression to fulminant hepatitis.


Asunto(s)
Brotes de Enfermedades , Genotipo , Virus de la Hepatitis E , Hepatitis E , Filogenia , Humanos , Hepatitis E/epidemiología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Sudán del Sur/epidemiología , Sudán/epidemiología , África Oriental/epidemiología , Genoma Viral , Teorema de Bayes , Masculino
14.
Photosynth Res ; 116(2-3): 315-31, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23761131

RESUMEN

Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Orgánulos/metabolismo , Fotosíntesis , Secuencia de Aminoácidos , Bacterias/ultraestructura , Proteínas Bacterianas/química , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Datos de Secuencia Molecular , Orgánulos/ultraestructura
15.
Viruses ; 15(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37113001

RESUMEN

Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.


Asunto(s)
Quirópteros , Coinfección , Virosis , Virus , Animales , Virus Satélites/genética , Metagenómica , Filogenia , Virus/genética , Retroviridae/genética , Virus de Hepatitis/genética , Insectos/genética , Secuenciación de Nucleótidos de Alto Rendimiento
16.
Microbiol Spectr ; 11(3): e0534622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191534

RESUMEN

The first 18 months of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Colombia were characterized by three epidemic waves. During the third wave, from March through August 2021, intervariant competition resulted in Mu replacing Alpha and Gamma. We employed Bayesian phylodynamic inference and epidemiological modeling to characterize the variants in the country during this period of competition. Phylogeographic analysis indicated that Mu did not emerge in Colombia but acquired increased fitness there through local transmission and diversification, contributing to its export to North America and Europe. Despite not having the highest transmissibility, Mu's genetic composition and ability to evade preexisting immunity facilitated its domination of the Colombian epidemic landscape. Our results support previous modeling studies demonstrating that both intrinsic factors (transmissibility and genetic diversity) and extrinsic factors (time of introduction and acquired immunity) influence the outcome of intervariant competition. This analysis will help set practical expectations about the inevitable emergences of new variants and their trajectories. IMPORTANCE Before the appearance of the Omicron variant in late 2021, numerous SARS-CoV-2 variants emerged, were established, and declined, often with different outcomes in different geographic areas. In this study, we considered the trajectory of the Mu variant, which only successfully dominated the epidemic landscape of a single country: Colombia. We demonstrate that Mu competed successfully there due to its early and opportune introduction time in late 2020, combined with its ability to evade immunity granted by prior infection or the first generation of vaccines. Mu likely did not effectively spread outside of Colombia because other immune-evading variants, such as Delta, had arrived in those locales and established themselves first. On the other hand, Mu's early spread within Colombia may have prevented the successful establishment of Delta there. Our analysis highlights the geographic heterogeneity of early SARS-CoV-2 variant spread and helps to reframe the expectations for the competition behaviors of future variants.


Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiología , Colombia/epidemiología , SARS-CoV-2/genética
17.
Virus Evol ; 9(1): vead018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025159

RESUMEN

Pathogens carried by insects, such as bunyaviruses, are frequently transmitted into human populations and cause diseases. Knowing which spillover events represent a public health threat remains a challenge. Metagenomic next-generation sequencing (mNGS) can support infectious disease diagnostics by enabling the detection of any pathogen from clinical specimens. mNGS was performed on blood samples to identify potential viral coinfections in human immunodeficiency virus (HIV)-positive individuals from Kinshasa, the Democratic Republic of the Congo (DRC), participating in an HIV diversity cohort study. Time-resolved phylogenetics and molecular assay development assisted in viral characterization. The nearly complete genome of a novel orthobunyavirus related to Nyangole virus, a virus previously identified in neighboring Uganda, was assembled from a hepatitis B virus-positive patient. A quantitative polymerase chain reaction assay was designed and used to screen >2,500 plasma samples from Cameroon, the DRC, and Uganda, failing to identify any additional cases. The recent sequencing of a US Center for Disease Control Arbovirus Reference Collection revealed that this same virus, now named Bangui virus, was first isolated in 1970 from an individual in the Central African Republic. Time-scaled phylogenetic analyses of Bangui with the related Anopheles and Tanga serogroup complexes indicate that this virus emerged nearly 10,000 years ago. Pervasive and episodic models further suggest that this virus is under purifying selection and that only distant common ancestors were subject to positive selection events. This study represents only the second identification of a Bangui virus infection in over 50 years. The presumed rarity of Bangui virus infections in humans can be explained by its constraint to an avian host and insect vector, precluding efficient transmission into the human population. Our results demonstrate that molecular phylogenetic analyses can provide insights into the threat posed by novel or re-emergent viruses identified by mNGS.

18.
Anal Bioanal Chem ; 404(8): 2329-38, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22983169

RESUMEN

Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna-Matthews-Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS). The size measured by ES-SMPS for FMO, chlorosomes, LH2, and phycobilisome were 6.4, 23.3, 9.5, and 33.4 nm, respectively. These size measurements were compared with values measured by dynamic light scattering and those reported in the literature. These complexes were deposited onto a transparent substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs were measured. It was observed that the LHCs have light absorption and fluorescence spectra similar to that in solution, demonstrating the viability of the process.

19.
Virus Evol ; 8(1): veac025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371561

RESUMEN

Molecular surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is growing in west Africa, especially in the Republic of Senegal. Here, we present a molecular epidemiology study of the early waves of SARS-CoV-2 infections in this country based on Bayesian phylogeographic approaches. Whereas the first wave in mid-2020 was characterized by a significant diversification of lineages and predominance of B.1.416, the second wave in late 2020 was composed primarily of B.1.1.420. Our results indicate that B.1.416 originated in Senegal and was exported mainly to Europe. In contrast, B.1.1.420 was introduced from Italy, gained fitness in Senegal, and then spread worldwide. Since both B.1.416 and B.1.1.420 lineages carry several positive selected mutations in the spike and nucleocapsid genes, each of which may explain their local dominance, their mutation profiles should be carefully monitored. As the pandemic continues to evolve, molecular surveillance in all regions of Africa will play a key role in stemming its spread.

20.
J Clin Virol ; 147: 105080, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35086043

RESUMEN

BACKGROUND: Viral diversity presents an ongoing challenge for diagnostic tests, which need to accurately detect all circulating variants. The Abbott Global Surveillance program monitors severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and their impact on diagnostic test performance. OBJECTIVES: To evaluate the capacity of Abbott molecular, antigen, and serologic assays to detect circulating SARS-CoV-2 variants, including all current variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta). STUDY DESIGN: Dilutions of variant virus cultures (B.1.1.7, B.1.351, B.1.429, B.1.526.1, B.1.526.2, B.1.617.1, B.1.617.2, P.1, R.1 and control isolate WA1) and a panel of N = 248 clinical samples from patients with sequence confirmed variant infections (B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, B.1.526.1, B.1.526.2, P.1, P.2, R.1) were evaluated on at least one assay: Abbott ID NOW COVID-19, m2000 RealTime SARS-CoV-2, Alinity m SARS-CoV-2, and Alinity m Resp-4-Plex molecular assays; the BinaxNOW COVID-19 Ag Card and Panbio COVID-19 Ag Rapid Test Device; and the ARCHITECT/Alinity i SARS-CoV-2 IgG and AdviseDx IgM assays, Panbio COVID-19 IgG assay, and ARCHITECT/Alinity i AdviseDx SARS-CoV-2 IgG II assay. RESULTS: Consistent with in silico predictions, each molecular and antigen assay detected VOC virus cultures with equivalent sensitivity to the WA1 control strain. Notably, 100% of all tested variant patient specimens were detected by molecular assays (N = 197 m2000, N = 88 Alinity m, N = 99 ID NOW), and lateral flow assays had a sensitivity of >94% for specimens with genome equivalents (GE) per device above 4 log (85/88, Panbio; 54/57 Binax). Furthermore, Abbott antibody assays detected IgG and IgM in 94-100% of sera from immune competent B.1.1.7 patients 15-26 days after symptom onset. CONCLUSIONS: These data confirm variant detection for 11 SARS-CoV-2 assays, which is consistent with each assay target region being highly conserved. Importantly, alpha, beta, gamma, and delta VOCs were detected by molecular and antigen assays, indicating that these tests may be suitable for widescale use where VOCs predominate.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Sensibilidad y Especificidad , Pruebas Serológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA