Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Gene Ther ; 28(5): 265-276, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33750925

RESUMEN

Dry age-related macular degeneration (AMD) is characterised by loss of central vision and currently has no approved medical treatment. Dysregulation of the complement system is thought to play an important role in disease pathology and supplementation of Complement Factor I (CFI), a key regulator of the complement system, has the potential to provide a treatment option for AMD. In this study, we demonstrate the generation of AAV constructs carrying the human CFI sequence and expression of CFI in cell lines and in the retina of C57BL/6 J mice. Four codon optimised constructs were compared to the most common human CFI sequence. All constructs expressed CFI protein; however, most codon optimised sequences resulted in significantly reduced CFI secretion compared to the non-optimised CFI sequence. In vivo expression analysis showed that CFI was predominantly expressed in the RPE and photoreceptors. Secreted protein in vitreous humour was demonstrated to be functionally active. The findings presented here have led to the formulation of an AAV-vectored gene therapy product currently being tested in a first-in-human clinical trial in subjects with geographic atrophy secondary to dry AMD (NCT03846193).


Asunto(s)
Factor I de Complemento , Degeneración Macular , Animales , Factor I de Complemento/genética , Terapia Genética , Humanos , Degeneración Macular/genética , Degeneración Macular/terapia , Ratones , Ratones Endogámicos C57BL , Retina
2.
Clin Genet ; 99(2): 298-302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124039

RESUMEN

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Adulto , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Repeticiones WD40
3.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922602

RESUMEN

Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/patología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Miopía/genética , Miopía/patología , Ceguera Nocturna/genética , Ceguera Nocturna/patología , Receptores Acoplados a Proteínas G/fisiología , Retina/patología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Retina/metabolismo , Transducción de Señal
4.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360642

RESUMEN

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo
5.
Am J Hum Genet ; 94(4): 625-33, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24680887

RESUMEN

Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is a progressive inherited retinal disorder characterized by photoreceptor cell death and genetic heterogeneity. Mutations in many genes have been implicated in the pathophysiology of RCD, but several others remain to be identified. Herein, we applied whole-exome sequencing to a consanguineous family with one subject affected with RCD and identified a homozygous nonsense mutation, c.226C>T (p.Arg76(∗)), in KIZ, which encodes centrosomal protein kizuna. Subsequent Sanger sequencing of 340 unrelated individuals with sporadic and autosomal-recessive RCD identified two other subjects carrying pathogenic variants in KIZ: one with the same homozygous nonsense mutation (c.226C>T [p.Arg76(∗)]) and another with compound-heterozygous mutations c.119_122delAACT (p.Lys40Ilefs(∗)14) and c.52G>T (p.Glu18(∗)). Transcriptomic analysis in mice detected mRNA levels of the mouse ortholog (Plk1s1) in rod photoreceptors, as well as its decreased expression when photoreceptors degenerated in rd1 mice. The presence of the human KIZ transcript was confirmed by quantitative RT-PCR in the retina, the retinal pigment epithelium, fibroblasts, and whole-blood cells (highest expression was in the retina). RNA in situ hybridization demonstrated the presence of Plk1s1 mRNA in the outer nuclear layer of the mouse retina. Immunohistology revealed KIZ localization at the basal body of the cilia in human fibroblasts, thus shedding light on another ciliary protein implicated in autosomal-recessive RCD.


Asunto(s)
Proteínas de Ciclo Celular/genética , Exoma , Genes Recesivos , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Animales , Codón sin Sentido , Femenino , Humanos , Masculino , Ratones , Linaje , Transcriptoma
6.
Hum Mol Genet ; 23(2): 491-501, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24026677

RESUMEN

Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid ß precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/genética , Mutación Missense , Retina/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Proteínas Adaptadoras Transductoras de Señales , Anciano , Demencia/genética , Exoma , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Fenotipo , Retina/patología , Distrofias Retinianas/metabolismo , Análisis de Secuencia de ADN
7.
Am J Hum Genet ; 92(1): 67-75, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23246293

RESUMEN

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas de la Membrana/genética , Miopía/genética , Ceguera Nocturna/genética , Polimorfismo Genético , Exoma , Femenino , Humanos , Masculino , Proteínas de la Membrana/análisis , Persona de Mediana Edad , Mutación , Retina/química
8.
Eur J Neurosci ; 42(3): 1966-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25997951

RESUMEN

Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gß5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.


Asunto(s)
Proteínas de la Membrana/metabolismo , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Anticuerpos , Dendritas/metabolismo , Femenino , Masculino , Proteínas de la Membrana/inmunología , Ratones , Transporte de Proteínas , Conejos , Receptores de Glutamato Metabotrópico/metabolismo
9.
Am J Hum Genet ; 90(2): 321-30, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325361

RESUMEN

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


Asunto(s)
Exoma , Mutación , Miopía/genética , Ceguera Nocturna/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animales , Electrorretinografía/métodos , Enfermedades Hereditarias del Ojo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X , Heterogeneidad Genética , Técnicas de Genotipaje/métodos , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteoglicanos/genética , Receptores de Glutamato Metabotrópico/genética , Retina/anomalías , Canales Catiónicos TRPM/genética
10.
Hum Mutat ; 33(1): 73-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22052604

RESUMEN

Rod-cone dystrophies (retinitis pigmentosa [RP]) are a clinically and genetically heterogeneous group of inherited retinal disorders characterized by photoreceptor degeneration. RP1 is a major gene underlying autosomal dominant (ad) RP, though prevalence figures vary depending on the origin of the cases from 0-10% of all adRP. Some mutations in RP1 also lead to autosomal recessive (ar) RP. Herein, we review all previously reported and several novel RP1 mutations in relation to the associated phenotype in RP1 patients from a French adRP cohort. Prevalence studies from this cohort show that 5.3% of the cases have RP1 mutations. This is in accordance with other studies reported from United Kingdom and United States. The majority of mutations represent truncating mutations that are located in a hot spot region of the gene. Similarly, we identified in total four novel deletions and nonsense mutations, of which two may represent recurrent mutations in this population. In addition, a novel missense mutation of uncertain pathogenicity was identified. Including our findings to date, 47 RP1 mutations are known to cause adRP. Variable penetrance of the disease was observed in our and other cohorts. Most patients with RP1 mutations show classical signs of RP with relatively preserved central vision and visual field.


Asunto(s)
Proteínas del Ojo/genética , Estudios de Asociación Genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Codón sin Sentido , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Francia , Genes Dominantes , Variación Genética , Genotipo , Haploinsuficiencia , Haplotipos , Humanos , Masculino , Proteínas Asociadas a Microtúbulos , Persona de Mediana Edad , Mutación Missense , Linaje , Fenotipo , Prevalencia , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/epidemiología , Eliminación de Secuencia
11.
PLoS One ; 10(5): e0127319, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26009893

RESUMEN

Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3' UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.


Asunto(s)
Retinitis Pigmentosa/genética , Rodopsina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Visión de Colores , Modelos Animales de Enfermedad , Electrorretinografía , Dosificación de Gen , Hemicigoto , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Ratas Sprague-Dawley , Ratas Transgénicas , Retina/patología , Rodopsina/química , Análisis de Secuencia de ADN , Tomografía de Coherencia Óptica , Transgenes
12.
PLoS One ; 9(3): e90342, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598786

RESUMEN

Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas de la Membrana/deficiencia , Miopía/genética , Ceguera Nocturna/genética , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/fisiopatología , Movimientos Oculares , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Movimientos de la Cabeza , Masculino , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Retina/patología
13.
Invest Ophthalmol Vis Sci ; 54(13): 8041-50, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24222301

RESUMEN

PURPOSE: Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations. METHODS: RNA in situ hybridization was performed with mouse retinal sections. A commercially available antibody was validated with GPR179-overexpressing COS-1 cells and applied to human retinal sections. Live-cell extracellular staining along with subsequent intracellular immunolocalization and ELISA studies were performed using mammalian cells overexpressing wild-type or missense mutated GPR179. Wild-type and splice site-mutated mini-gene constructs were transiently transfected, and RNA was extracted. RT-PCR-amplified products were cloned, and Sanger sequenced. RESULTS: Mouse Gpr179 transcript was expressed in the upper part of the inner nuclear layer, and the respective human protein localized at the dendritic tips of bipolar cells in human retina. The missense mutations p.Tyr220Cys, p.Gly455Asp, and p.His603Tyr led to severely reduced cell surface localization, whereas p.Asp126His did not. The mutated splice donor site altered GPR179 splicing. CONCLUSIONS: Our findings indicate that the site of expression and protein localization of human and mouse GPR179 is similar to that of other proteins implicated in cCSNB. For most of the mutations identified so far, loss of the GPR179 protein function seems to be the underlying pathogenic mechanism leading to this form of cCSNB.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Miopía/genética , Ceguera Nocturna/genética , ARN/genética , Receptores Acoplados a Proteínas G/genética , Células Bipolares de la Retina/patología , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Enfermedades Hereditarias del Ojo/diagnóstico , Enfermedades Hereditarias del Ojo/metabolismo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Miopía/diagnóstico , Miopía/metabolismo , Ceguera Nocturna/diagnóstico , Ceguera Nocturna/metabolismo , Reacción en Cadena de la Polimerasa , Receptores Acoplados a Proteínas G/biosíntesis , Células Bipolares de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA