Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Genet ; 142(1): 1-9, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35941319

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but highly variable expressivity. In most patients, Next Generation Sequencing (NGS) technologies allow the identification of a loss-of-function pathogenic variant in the NF1 gene, a negative regulator of the RAS-MAPK pathway. We describe the 5-year diagnosis wandering of a patient with a clear NF1 clinical diagnosis, but no molecular diagnosis using standard molecular technologies. The patient presented with a typical NF1 phenotype but NF1 targeted NGS, NF1 transcript analysis, MLPA, and array comparative genomic hybridization failed to reveal a genetic aberration. After 5 years of unsuccessful investigations, trio WGS finally identified a de novo mosaic (VAF ~ 14%) 24.6 kb germline deletion encompassing the promoter and first exon of NF1. This case report illustrates the relevance of WGS to detect structural variants including copy number variants that would be missed by alternative approaches. The identification of the causal pathogenic variant allowed a tailored genetic counseling with a targeted non-invasive prenatal diagnosis by detecting the deletion in plasmatic cell-free DNA from the proband's pregnant partner. This report clearly highlights the need to make WGS a clinically accessible test, offering a tremendous opportunity to identify a molecular diagnosis for otherwise unsolved cases.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Genes de Neurofibromatosis 1 , Hibridación Genómica Comparativa , Exones , Secuenciación Completa del Genoma
2.
BJOG ; 129(11): 1879-1886, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35486001

RESUMEN

OBJECTIVES: Cell-free fetal DNA (cffDNA) analysis is performed routinely for aneuploidy screening, RhD genotyping or sex determination. Although applications to single gene disorders (SGD) are being rapidly developed worldwide, only a few laboratories offer cffDNA testing routinely as a diagnosis service for this indication. In a previous report, we described a standardised protocol for non-invasive exclusion of paternal variant in SGD. Three years later, we now report our clinical experience with the protocol. DESIGN: Descriptive study. SETTING: Multi-centre French. POPULATION: Indications for referral included pregnancies at risk of 25% or 50% of paternally inherited SGD, and pregnancies associated with an increased risk of SGD due to a de novo variant, either from strongly suggestive ultrasound findings or from a possible parental germinal mosaicism in the context of a previously affected child. METHODS: Non-invasive prenatal diagnosis was performed using custom assays for droplet digital PCR. Feasibility, diagnostic performance and turn-around time were evaluated. RESULTS: Mean time for a new assay design and validation was evaluated at 14 days, and mean result reporting time was 6 days. All referred pathogenic variants could be targeted except one located in a complex genomic region. A result was obtained for every 198 referrals except two. CONCLUSION: This service was successfully implemented as a routine laboratory practice. It has been widely adopted by French clinicians and patients for paternal variant exclusion in various disorders. TWEETABLE ABSTRACT: A robust approach to non-invasive prenatal exclusion of paternal pathogenic variant in a diagnosis setting.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Prenatales no Invasivas , Aneuploidia , Niño , Femenino , Humanos , Masculino , Mutación , Herencia Paterna , Reacción en Cadena de la Polimerasa/métodos , Embarazo , Diagnóstico Prenatal/métodos
3.
Clin Chem Lab Med ; 56(5): 728-738, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29613853

RESUMEN

BACKGROUND: To limit risks of miscarriages associated with invasive procedures of current prenatal diagnosis practice, we aim to develop a personalized medicine-based protocol for non-invasive prenatal diagnosis (NIPD) of monogenic disorders relying on the detection of paternally inherited mutations in maternal blood using droplet digital PCR (ddPCR). METHODS: This study included four couples at risk of transmitting paternal neurofibromatosis type 1 (NF1) mutations and four couples at risk of transmitting compound heterozygous CFTR mutations. NIPD was performed between 8 and 15 weeks of gestation, in parallel to conventional invasive diagnosis. We designed specific hydrolysis probes to detect the paternal mutation and to assess the presence of cell-free fetal DNA by ddPCR. Analytical performances of each assay were determined from paternal sample, an then fetal genotype was inferred from maternal plasma sample. RESULTS: Presence or absence of the paternal mutant allele was correctly determined in all the studied plasma DNA samples. CONCLUSIONS: We report an NIPD protocol suitable for implementation in an experienced laboratory of molecular genetics. Our proof-of-principle results point out a high accuracy for early detection of paternal NF1 and CFTR mutations in cell-free DNA, and open new perspectives for extending the technology to NIPD of many other monogenic diseases.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Neurofibromatosis 1/genética , Reacción en Cadena de la Polimerasa , Diagnóstico Prenatal , Femenino , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/sangre , Trastornos del Neurodesarrollo/genética , Neurofibromatosis 1/sangre , Neurofibromatosis 1/diagnóstico
4.
Prenat Diagn ; 36(5): 397-406, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26850935

RESUMEN

BACKGROUND: Achondroplasia is generally detected by abnormal prenatal ultrasound findings in the third trimester of pregnancy and then confirmed by molecular genetic testing of fetal genomic DNA obtained by aspiration of amniotic fluid. This invasive procedure presents a small but significant risk for both the fetus and mother. Therefore, non-invasive procedures using cell-free fetal DNA in maternal plasma have been developed for the detection of the fetal achondroplasia mutations. METHODS: To determine whether the fetus carries the de novo mis-sense genetic mutation at nucleotide 1138 in FGFR3 gene involved in >99% of achondroplasia cases, we developed two independent methods: digital-droplet PCR combined with minisequencing, which are very sensitive methods allowing detection of rare alleles. RESULTS: We collected 26 plasmatic samples from women carrying fetus at risk of achondroplasia and diagnosed to date a total of five affected fetuses in maternal blood. The sensitivity and specificity of our test are respectively 100% [95% confidence interval, 56.6-100%] and 100% [95% confidence interval, 84.5-100%]. CONCLUSIONS: This novel, original strategy for non-invasive prenatal diagnosis of achondroplasia is suitable for implementation in routine clinical testing and allows considering extending the applications of these technologies in non-invasive prenatal diagnosis of many other monogenic diseases. © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Acondroplasia/diagnóstico , ADN/sangre , Pruebas de Detección del Suero Materno , Acondroplasia/sangre , Acondroplasia/genética , Algoritmos , Estudios de Casos y Controles , ADN/genética , Femenino , Humanos , Mutación Missense , Reacción en Cadena de la Polimerasa , Embarazo , Diagnóstico Prenatal , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
5.
J Mol Diagn ; 26(2): 150-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008284

RESUMEN

Neurofibromatosis type-1 is a genetic disorder caused by loss-of-function variants in the tumor-suppressor NF1. Approximately 4% to 11% of neurofibromatosis type-1 patients have a NF1 locus complete deletion resulting from nonallelic homologous recombination between low copy repeats. Codeleted genes probably account for the more severe phenotype observed in NF1-deleted patients. This genotype-phenotype correlation highlights the need for a detailed molecular description. A droplet digital PCR (ddPCR) set along the NF1 locus was designed to delimitate the three recurrent NF1 deletion breakpoints. The ddPCR was tested in 121 samples from nonrelated NF1-deleted patients. Classification based on ddPCR versus multiplex ligation-dependent probe amplification (MLPA) was compared. In addition, microsatellites were analyzed to identify parental origin of deletions. ddPCR identified 77 type-1 (64%), 20 type-2 (16%), 7 type-3 (6%), and 17 atypical deletions (14%). The results were comparable with MLPA, except for three atypical deletions misclassified as type-2 using MLPA, for which the SUZ12 gene was not deleted. A significant maternal bias (25 of 30) in the origin of deletions was identified. This study proposes a fast and efficient ddPCR quantification to allow fine NF1 deletion classification. It indicates that ddPCR can be implemented easily into routine diagnosis to complement the techniques dedicated to NF1 point variant identification. This new tool may help unravel the genetic basis conditioning phenotypic variability in NF1-deleted patients and offer tailored genetic counseling.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Reacción en Cadena de la Polimerasa Multiplex , Recombinación Homóloga , Fenotipo , Familia , Eliminación de Gen
6.
Mol Vis ; 19: 2040-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24174867

RESUMEN

PURPOSE: To report the clinical and molecular findings of a kindred with Wagner syndrome (WS) revealed by intraocular inflammatory features. METHODS: Eight available family members underwent complete ophthalmologic examination, including laser flare cell meter measurements. Collagen, type II, alpha 1, versican (VCAN), frizzled family receptor 4, low density lipoprotein receptor-related protein 5, tetraspanin 12, and Norrie disease (pseudoglioma) genes were screened with direct sequencing. RESULTS: The index case was initially referred for unexplained severe and chronic postoperative bilateral uveitis following a standard cataract surgery procedure. Clinical examination of the proband revealed an optically empty vitreous with avascular vitreous strands and veils, features highly suggestive of WS. The systematic familial ophthalmologic examination identified three additional unsuspected affected family members who also presented with the WS phenotype, including uveitis for one of them. We identified a novel c.4004-6T>A nucleotide substitution at the acceptor splice site of intron 7 of the VCAN gene that segregated with the disease phenotype. CONCLUSIONS: We present a family with WS with typical WS features and intraocular inflammatory manifestations associated with a novel splice site VCAN mutation. Beyond the structural role in the retinal-vitreous architecture, versican is also emerging as a pivotal mediator of the inflammatory response, supporting uveitis predisposition as a clinical manifestation of WS.


Asunto(s)
Mutación/genética , Degeneración Retiniana/complicaciones , Degeneración Retiniana/genética , Uveítis/complicaciones , Uveítis/genética , Versicanos/deficiencia , Adolescente , Adulto , Anciano , Secuencia de Bases , Simulación por Computador , Familia , Femenino , Fondo de Ojo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Fenotipo , Procesamiento Postranscripcional del ARN/genética , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Versicanos/genética , Adulto Joven
7.
Neuromuscul Disord ; 33(5): 367-370, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996638

RESUMEN

Uniparental isodisomy is a condition where both chromosomes of a pair are inherited from one parental homologue. If a deleterious variant is present on the duplicated chromosome, its homozygosity can reveal an autosomal recessive disorder in the offspring of a heterozygous carrier. Limb-girdle muscular dystrophy (LGMD) R3 is an autosomal recessive inherited disease that is associated with alpha-sarcoglycan gene (SGCA) variants. We report the first published case of LGMDR3 due to a homozygous variant in SGCA unmasked by uniparental isodisomy. The patient is an 8-year-old who experienced delayed motor milestones but normal cognitive development. He presented with muscle pain and elevated plasma creatine kinase. Sequencing of the SGCA gene showed a homozygous pathogenic variant. Parents were not related and only the father was heterozygous for the pathogenic variant. A chromosomal microarray revealed a complete chromosome 17 copy number neutral loss of heterozygosity encompassing SGCA, indicating paternal uniparental isodisomy.


Asunto(s)
Distrofia Muscular de Cinturas , Disomía Uniparental , Masculino , Humanos , Niño , Disomía Uniparental/genética , Cromosomas Humanos Par 17/genética , Distrofia Muscular de Cinturas/genética , Sarcoglicanos/genética , Padre
8.
PLoS One ; 18(4): e0280976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093806

RESUMEN

Non-invasive prenatal diagnosis of single-gene disorders (SGD-NIPD) has been widely accepted, but is mostly limited to the exclusion of either paternal or de novo mutations. Indeed, it is still difficult to infer the inheritance of the maternal allele from cell-free DNA (cfDNA) analysis. Based on the study of maternal haplotype imbalance in cfDNA, relative haplotype dosage (RHDO) was developed to address this challenge. Although RHDO has been shown to be reliable, robust control of statistical error and explicit delineation of critical parameters for assessing the quality of the analysis have not been fully addressed. We present here a universal and adaptable enhanced-RHDO (eRHDO) procedure through an automated bioinformatics pipeline with a didactic visualization of the results, aiming to be applied for any SGD-NIPD in routine care. A training cohort of 43 families carrying CFTR, NF1, DMD, or F8 mutations allowed the characterization and optimal setting of several adjustable data variables, such as minimum sequencing depth, type 1 and type 2 statistical errors, as well as the quality assessment of intermediate steps and final results by block score and concordance score. Validation was successfully performed on a test cohort of 56 pregnancies. Finally, computer simulations were used to estimate the effect of fetal-fraction, sequencing depth and number of informative SNPs on the quality of results. Our workflow proved to be robust, as we obtained conclusive and correctly inferred fetal genotypes in 94.9% of cases, with no false-negative or false-positive results. By standardizing data generation and analysis, we fully describe a turnkey protocol for laboratories wishing to offer eRHDO-based non-invasive prenatal diagnosis for single-gene disorders as an alternative to conventional prenatal diagnosis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Prenatales no Invasivas , Embarazo , Femenino , Humanos , Haplotipos , Pruebas Prenatales no Invasivas/métodos , Diagnóstico Prenatal/métodos , Genotipo
9.
Neuro Oncol ; 20(7): 917-929, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29409008

RESUMEN

Background: Clinical overlap between neurofibromatosis type 2 (NF2), schwannomatosis, and meningiomatosis can make clinical diagnosis difficult. Hence, molecular investigation of germline and tumor tissues may improve the diagnosis. Methods: We present the targeted next-generation sequencing (NGS) of NF2, SMARCB1, LZTR1, SMARCE1, and SUFU tumor suppressor genes, using an amplicon-based approach. We analyzed blood DNA from a cohort of 196 patients, including patients with NF2 (N = 79), schwannomatosis (N = 40), meningiomatosis (N = 12), and no clearly established diagnosis (N = 65). Matched tumor DNA was analyzed when available. Forty-seven NF2-/SMARCB1-negative schwannomatosis patients and 27 NF2-negative meningiomatosis patients were also evaluated. Results: A NF2 variant was found in 41/79 (52%) NF2 patients. SMARCB1 or LZTR1 variants were identified in 5/40 (12.5%) and 13/40 (∼32%) patients in the schwannomatosis cohort. Potentially pathogenic variants were found in 12/65 (18.5%) patients with no clearly established diagnosis. A LZTR1 variant was identified in 16/47 (34%) NF2/SMARCB1-negative schwannomatosis patients. A SMARCE1 variant was found in 3/39 (∼8%) meningiomatosis patients. No SUFU variant was found in the cohort. NGS was an effective and sensitive method to detect mutant alleles in blood or tumor DNA of mosaic NF2 patients. Interestingly, we identified a 4-hit mechanism resulting in the complete NF2 loss-of-function combined with SMARCB1 and LZTR1 haploinsufficiency in two-thirds of tumors from NF2 patients. Conclusions: Simultaneous investigation of NF2, SMARCB1, LZTR1, and SMARCE1 is a key element in the differential diagnosis of NF2, schwannomatosis, and meningiomatosis. The targeted NGS strategy is suitable for the identification of NF2 mosaicism in blood and for the investigation of tumors from these patients.


Asunto(s)
Genes Supresores de Tumor , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Meníngeas/diagnóstico , Meningioma/diagnóstico , Mutación , Neurilemoma/diagnóstico , Neurofibromatosis/diagnóstico , Neurofibromatosis 2/diagnóstico , Neoplasias Cutáneas/diagnóstico , Biomarcadores de Tumor , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Diagnóstico Diferencial , Estudios de Seguimiento , Humanos , Neoplasias Meníngeas/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromatosis/genética , Neurofibromatosis 2/genética , Neurofibromina 2/genética , Pronóstico , Estudios Prospectivos , Proteínas Represoras/genética , Estudios Retrospectivos , Proteína SMARCB1/genética , Neoplasias Cutáneas/genética , Factores de Transcripción/genética
10.
Ann Biol Clin (Paris) ; 74(3): 269-77, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27237800

RESUMEN

The discovery of free fetal DNA in the maternal circulation has inaugurated the era of non-invasive prenatal diagnosis. The latter has the advantage of avoiding the use of conventional obstetric procedures, such as chorionic villus sampling or aspiration of amniotic fluid, thus limiting the risks of miscarriage they induce. However, as free fetal DNA accounts for about 10% of cell-free DNA in maternal plasma, the presence of ambient maternal DNA can make it difficult to detect fetal alleles of paternal origin. Digital Droplet PCR (ddPCR) is a very sensitive method derived from quantitative real-time PCR (qPCR) for the detection of rare alleles and their absolute quantification by removing the necessity of standards. Here we show that this new technology can be applied in routine prenatal fetal RHD genotyping from maternal blood. In conclusion, the use of quantitative properties of digital PCR, in terms of accuracy, sensitivity and specificity, allows one to consider extending the applications of this new technology in non-invasive prenatal diagnosis of many diseases such as autosomal monogenic diseases, either dominant or recessive.


Asunto(s)
ADN/análisis , Feto/química , Pruebas de Detección del Suero Materno/métodos , Madres , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sistema del Grupo Sanguíneo Rh-Hr/genética , Análisis Químico de la Sangre/métodos , ADN/metabolismo , Femenino , Feto/metabolismo , Francia , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Embarazo , Sistema del Grupo Sanguíneo Rh-Hr/sangre , Sensibilidad y Especificidad
11.
Eur J Hum Genet ; 23(7): 929-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25351777

RESUMEN

Defects in TRIM32 were reported in limb-girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathies (STM) and in Bardet-Biedl syndrome. Few cases have been described to date in LGMD2H/STM, but this gene is not systematically analysed because of the absence of specific signs and difficulties in protein analysis. By using high-throughput variants screening techniques, we identified variants in TRIM32 in two patients presenting nonspecific LGMD. We report the first case of total inactivation by homozygous deletion of the entire TRIM32 gene. Of interest, the deletion removes part of the ASTN2 gene, a large gene in which TRIM32 is nested. Despite the total TRIM32 gene inactivation, the patient does not present a more severe phenotype. However, he developed a mild progressive cognitive impairment that may be related to the loss of function of ASTN2 because association between ASTN2 heterozygous deletions and neurobehavioral disorders was previously reported. Regarding genomic characteristics at breakpoint of the deleted regions of TRIM32, we found a high density of repeated elements, suggesting a possible hotspot. These observations illustrate the importance of high-throughput technologies for identifying molecular defects in LGMD, confirm that total loss of function of TRIM32 is not associated with a specific phenotype and that TRIM32/ASTN2 inactivation could be associated with cognitive impairment.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Distrofia Muscular de Cinturas/genética , Factores de Transcripción/genética , Adulto , Secuencia de Bases , Análisis Mutacional de ADN/métodos , Salud de la Familia , Femenino , Humanos , Masculino , Distrofia Muscular de Cinturas/patología , Linaje , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
12.
Neuromuscul Disord ; 24(12): 1111-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25193336

RESUMEN

Duchenne and Becker muscular dystrophy are X-linked allelic disorders caused by mutations in the DMD gene. The majority (65%) of these mutations are intragenic deletions/duplications that often lead to frameshift errors. Among the remaining ones, we find the mid-intronic mutations that usually create cryptic exons by activating potential splice sites. In this report, we identified, in a Becker muscular dystrophy patient, a mid-intronic variation that creates two ESE sites in intron 26 of DMD gene resulting in the insertion of a new cryptic exon in mRNA. Despite the out of frame character of this mutation, we observed the production of a reduced amount of full-size dystrophin which could be explained by the alternation between normal and altered splicing of dystrophin mRNA in this patient. To our knowledge, this is the first case report describing this novel pathogenic mechanism of mid-intronic variations of DMD gene.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Análisis Mutacional de ADN , Exones , Humanos , Intrones , Persona de Mediana Edad , Distrofia Muscular de Duchenne/fisiopatología , Empalme del ARN , ARN Mensajero
13.
Eur J Hum Genet ; 21(9): 977-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23340513

RESUMEN

The frequency of disease-related large rearrangements (referred to as copy-number mutations, CNMs) varies among genes, and search for these mutations has an important place in diagnostic strategies. In recent years, CGH method using custom-designed high-density oligonucleotide-based arrays allowed the development of a powerful tool for detection of alterations at the level of exons and made it possible to provide flexibility through the possibility of modeling chips. The aim of our study was to test custom-designed oligonucleotide CGH array in a diagnostic laboratory setting that analyses several genes involved in various genetic diseases, and to compare it with conventional strategies. To this end, we designed a 12-plex CGH array (135k; 135 000 probes/subarray) (Roche Nimblegen) with exonic and intronic oligonucleotide probes covering 26 genes routinely analyzed in the laboratory. We tested control samples with known CNMs and patients for whom genetic causes underlying their disorders were unknown. The contribution of this technique is undeniable. Indeed, it appeared reproducible, reliable and sensitive enough to detect heterozygous single-exon deletions or duplications, complex rearrangements and somatic mosaicism. In addition, it improves reliability of CNM detection and allows determination of boundaries precisely enough to direct targeted sequencing of breakpoints. All of these points, associated with the possibility of a simultaneous analysis of several genes and scalability 'homemade' make it a valuable tool as a new diagnostic approach of CNMs.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Exones , Estudios de Casos y Controles , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Femenino , Duplicación de Gen , Asesoramiento Genético , Pruebas Genéticas/métodos , Hemofilia A/diagnóstico , Hemofilia A/genética , Humanos , Síndrome de Kallmann/diagnóstico , Síndrome de Kallmann/genética , Masculino , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA