Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 23(5): 1673-1679, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36849129

RESUMEN

Boron-based two-dimensional (2D) materials are an excellent platform for nanoelectronics applications. Rhombohedral boron monosulfide (r-BS) is attracting particular attention because of its unique layered crystal structure suitable for exploring various functional properties originating in the 2D nature. However, studies to elucidate its fundamental electronic states have been largely limited because only tiny powdered crystals were available, hindering a precise investigation by spectroscopy such as angle-resolved photoemission spectroscopy (ARPES). Here we report the direct mapping of the band structure with a tiny (∼20 × 20 µm2) r-BS powder crystal by utilizing microfocused ARPES. We found that r-BS is a p-type semiconductor with a band gap of >0.5 eV characterized by the anisotropic in-plane effective mass. The present results demonstrate the high applicability of micro-ARPES to tiny powder crystals and widen an opportunity to access the yet-unexplored electronic states of various novel materials.

2.
Small ; 19(47): e2301525, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528705

RESUMEN

Hierarchically porous carbon microlattices (HPCMLs) fabricated by using a composite photoresin and stereolithography (SLA) 3D printing is reported. Containing magnesium oxide nanoparticles (MgO NPs) as porogens and multilayer graphene nanosheets as UV-scattering inhibitors, the composite photoresin is formed to simple cubic microlattices with digitally designed porosity of 50%. After carbonization in vacuum at 1000 °C and chemical removal of MgO NPs, it is realized that carbon microlattices possessing hierarchical porosity are composed of the lattice architecture (≈100 µm), macropores (≈5 µm), mesopores (≈50 nm), and micropores (≈1 nm). The linear shrinkage after pyrolysis is as small as 33%. Compressive strength of 7.45 to 10.45 MPa and Young's modulus of 375 to 736 MPa are achieved, proving HPCMLs a robust mechanical component among reported carbon materials with a random pore structure. Having a few millimeters in thickness, the HPCMLs can serve as thick supercapacitor electrodes that demonstrate gravimetric capacitances 105 and 13.8 F g-1 in aqueous and organic electrolyte, reaching footprint areal capacitances beyond 10 and 1 F cm-2 , respectively. The results present that the composite photoresin for SLA can yield carbon microarchitectures that integrate structural and functional properties for structural energy storages .

3.
J Chem Phys ; 158(14): 144116, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061477

RESUMEN

Topological data analysis based on persistent homology has been applied to the molecular dynamics simulation for the fast ion-conducting phase (α-phase) of AgI to show its effectiveness on the ion migration mechanism analysis. Time-averaged persistence diagrams of α-AgI, which quantitatively record the shape and size of the ring structures in the given atomic configurations, clearly showed the emergence of the four-membered rings formed by two Ag and two I ions at high temperatures. They were identified as common structures during the Ag ion migration. The averaged potential energy change due to the deformation of the four-membered ring during Ag migration agrees well with the activation energy calculated from the conductivity Arrhenius plot. The concerted motion of two Ag ions via the four-membered ring was also successfully extracted from molecular dynamics simulations by our approach, providing new insight into the specific mechanism of the concerted motion.

4.
Molecules ; 28(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770922

RESUMEN

Hydrogen can be stored in the interstitial sites of the lattices of intermetallic compounds. To date, intermetallic compound LaNi5 or related LaNi5-based alloys are known to be practical hydrogen storage materials owing to their higher volumetric hydrogen densities, making them a compact hydrogen storage method and allowing stable reversible hydrogen absorption and desorption reactions to take place at room temperature below 1.0 MPa. By contrast, gravimetric hydrogen density is required for key improvements (e.g., gravimetric hydrogen density of LaNi5: 1.38 mass%). Although hydrogen storage materials have typically been evaluated for their hydrogen storage properties below 10 MPa, reactions between hydrogen and materials can be facilitated above 1 GPa because the chemical potential of hydrogen dramatically increases at a higher pressure. This indicates that high-pressure experiments above 1 GPa could clarify the latent hydrogen absorption reactions below 10 MPa and potentially explore new hydride phases. In this study, we investigated the hydrogen absorption reaction of LaNi5 above 1 GPa at room temperature to understand their potential hydrogen storage capacities. The high-pressure experiments on LaNi5 with and without an internal hydrogen source (BH3NH3) were performed using a multi-anvil-type high-pressure apparatus, and the reactions were observed using in situ synchrotron radiation X-ray diffraction with an energy dispersive method. The results showed that 2.07 mass% hydrogen was absorbed by LaNi5 at 6 GPa. Considering the unit cell volume expansion, the estimated hydrogen storage capacity could be 1.5 times higher than that obtained from hydrogen absorption reaction below 1.0 MPa at 303 K. Thus, 33% of the available interstitial sites in LaNi5 remained unoccupied by hydrogen atoms under conventional conditions. Although the hydrogen-absorbed LaNi5Hx (x < 9) was maintained below 573 K at 10 GPa, LaNi5Hx began decomposing into NiH, and the formation of a new phase was observed at 873 K and 10 GPa. The new phase was indexed to a hexagonal or trigonal unit cell with a ≈ 4.44 Å and c ≈ 8.44 Å. Further, the newly-formed phase was speculated to be a new hydride phase because the Bragg peak positions and unit cell parameters were inconsistent with those reported for the La-Ni intermetallic compounds and La-Ni hydride phases.

5.
Phys Chem Chem Phys ; 22(25): 13872-13879, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32391527

RESUMEN

The properties of the mixed system LiBH4-LiCl-P2S5 are studied with respect to all-solid-state batteries. The studied material undergoes an amorphization upon heating above 60 °C, accompanied with increased Li+ conductivity beneficial for battery electrolyte applications. The measured ionic conductivity is ∼10-3 S cm-1 at room temperature with an activation energy of 0.40(2) eV after amorphization. Structural analysis and characterization of the material suggest that BH4 groups and PS4 may belong to the same molecular structure, where Cl ions interplay to accommodate the structural unit. Thanks to its conductivity, ductility and electrochemical stability (up to 5 V, Au vs. Li+/Li), this new electrolyte is successfully tested in battery cells operated with a cathode material (layered TiS2, theo. capacity 239 mA h g-1) and Li anode resulting in 93% capacity retention (10 cycles) and notable cycling stability under the current density ∼12 mA g-1 (0.05C-rate) at 50 °C. Further advanced characterisation by means of operando synchrotron X-ray diffraction in transmission mode contributes explicitly to a better understanding of the (de)lithiation processes of solid-state battery electrodes operated at moderate temperatures.

6.
Chemphyschem ; 20(10): 1392-1397, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30575253

RESUMEN

The hydrogen-release reaction of a complex transition metal hydride, LaMg2 NiH7 , composed of La3+ , 2×Mg2+ , [NiH4 ]4- and 3×H- , was studied by thermal analyses, powder X-ray, and neutron diffraction and inelastic neutron scattering. Upon heating, LaMg2 NiH7 released hydrogen at approximately 567 K and decomposed into LaH2-3 and Mg2 Ni. Before the reaction, covalently bound hydrogen (Hc °v. ) in [NiH4 ]4- exhibited a larger atomic displacement than H- , although a weakening of the chemical bonds around [NiH4 ]4- and H- was observed. These results indicate the precursor phenomenon of a hydrogen-release reaction, wherein there is a large atomic displacement of Hc °v. that induces the hydrogen-release reaction rather than H- . As an isothermal reaction, LaMg2 NiH7 formed LaMg2 NiH2.4 at 503 K in vacuum for 48 h, and LaMg2 NiH2.4 reacted with hydrogen to reform LaMg2 NiH7 at 473 K under 1 MPa of H2 gas pressure for 10 h. These results revealed that LaMg2 NiH7 exhibited partially reversible hydrogen-release and uptake reactions.

7.
Inorg Chem ; 57(2): 867-872, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29278336

RESUMEN

A complex hydride (LaMg2NiH7) composed of La3+, two Mg2+, [NiH4]4- with a covalently bonded hydrogen, and three H- was formed from an intermetallic LaMg2Ni via an intermediate phase (LaMg2NiH4.6) composed of La, Mg, NiH2, NiH3 units, and H atoms at tetrahedral sites. The NiH2 and NiH3 units in LaMg2NiH4.6 were reported as precursors for [NiH4]4- in LaMg2NiH7 [ Miwa et al. J. Phys. Chem. C 2016 , 120 , 5926 - 5931 ]. To further understand the hydrogen states in the precursors (the NiH2 and NiH3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg2NiH4.6, we observed the hydrogen vibrations in LaMg2NiH4.6 and LaMg2NiH7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH2 and NiH3 units with that of [NiH4]4- shows that the librational modes of the NiH2 and NiH3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH4]4-. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H- and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH4]4- and H-.

8.
Small ; 12(25): 3381-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27173002

RESUMEN

A high-capacity electrode active material with macrocyclic nanochannels is developed for a negative electrode of lithium batteries. With appropriate design of the molecular and crystal structures, a ubiquitous chemical commonly available in reagent stocks of any chemistry laboratories, naphthalene, was transformed into a high-performance electrode material for all-solid-state lithium batteries.

9.
Inorg Chem ; 54(8): 4120-5, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25815415

RESUMEN

Mg(B3H8)2·2THF (THF = tetrahydrofuran) was prepared by the addition of BH3·THF to Mg/Hg amalgam. Heating a 1:2 molar mixture of Mg(B3H8)2·2THF and MgH2 to 200 °C under 5 MPa H2 for 2 h leads to nearly quantitative conversion to Mg(BH4)2. The differential scanning calorimetry profile of the reaction measured under 5 MPa H2 shows an initial endothermic feature at ∼65 °C for a phase change of the compound followed by a broad exothermic feature that reaches a maximum at 130 °C corresponding to the hydrogenation of Mg(B3H8)2 to Mg(BH4)2. Heating Mg(B3H8)2·2THF to 200 °C under 5 MPa H2 pressure in the absence of MgH2 gives predominantly MgB12H12 as well as significant amounts of MgB10H10 and Mg(BH4)2. Hydrogenation of a mixture of Mg(B3H8)2·2THF and LiH in a 1:4 molar ratio at 130 °C under 5 MPa H2 yields [B12H12](2-) in addition to [BH4](-), while a 1:4 molar ratio of Mg(B3H8)2·2THF and NaH yields [BH4](-) and a new borane, likely [B2H7](-). Hydrogenation of the NaH-containing mixture at 130 °C gives primarily the alternative borane, indicating it is an intermediate in the two-step conversion of the triborane to [BH4](-). The solvent-free triborane Mg(B3H8)2, derived from the low-temperature dehydrogenation of Mg(BH4)2, also produces Mg(BH4)2, but higher temperature and pressure is required to effect the complete transformation of the Mg(B3H8)2. These results show that the reversible transformation of the triborane depends on the stability of the metal hydride. The more stable the metal hydride, that is, LiH > NaH > MgH2, the lower is the "regeneration" efficiency.

10.
Nanotechnology ; 26(25): 254001, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26041380

RESUMEN

The ionic conduction and electrochemical and thermal stabilities of the LiBH4-LiCl solid-state electrolyte were investigated for use in bulk-type all-solid-state lithium-sulfur batteries. The LiBH4-LiCl solid-state electrolyte exhibiting a lithium ionic conductivity of [Formula: see text] at 373 K, forms a reversible interface with a lithium metal electrode and has a wide electrochemical potential window up to 5 V. By means of the high-energy mechanical ball-milling technique, we prepared a composite powder consisting of elemental sulfur and mixed conductive additive, i.e., Ketjen black and Maxsorb. In that composite powder, homogeneous dispersion of the materials is achieved on a nanometer scale, and thereby a high concentration of the interface among them is induced. Such nanometer-scale dispersals of both elemental sulfur and carbon materials play an important role in enhancing the electrochemical reaction of elemental sulfur. The highly deformable LiBH4-LiCl electrolyte assists in the formation of a high concentration of tight interfaces with the sulfur-carbon composite powder. The LiBH4-LiCl electrolyte also allows the formation of the interface between the positive electrode and the electrolyte layers, and thus the Li-ion transport paths are established at that interface. As a result, our battery exhibits high discharge capacities of 1377, 856, and 636 mAh g(-1) for the 1st, 2nd, and 5th discharges, respectively, at 373 K. These results imply that complex hydride-based solid-state electrolytes that contain Cl-ions in the crystal would be integrated into rechargeable batteries.

11.
Phys Chem Chem Phys ; 17(12): 8276-82, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25732233

RESUMEN

Complex transition metal hydrides have potential technological application as hydrogen storage materials, smart windows and sensors. Recent exploration of these materials has revealed that the incorporation of anionic hydrogen into these systems expands the potential number of viable complexes, while varying the countercation allows for optimisation of their thermodynamic stability. In this study, the optimised synthesis of Na2Mg2TH8 (T = Fe, Ru) has been achieved and their thermal decomposition properties studied by ex situ Powder X-ray Diffraction, Gas Chromatography and Pressure-Composition Isotherm measurements. The temperature and pathway of decomposition of these isostructural compounds differs considerably, with Na2Mg2FeH8 proceeding via NaMgH3 in a three-step process, while Na2Mg2RuH8 decomposes via Mg2RuH4 in a two-step process. The first desorption maxima of Na2Mg2FeH8 occurs at ca. 400 °C, while Na2Mg2RuH8 has its first maxima at 420 °C. The enthalpy and entropy of desorption for Na2Mg2TH8 (T = Fe, Ru) has been established by PCI measurements, with the ΔHdes for Na2Mg2FeH8 being 94.5 kJ mol(-1) H2 and 125 kJ mol(-1) H2 for Na2Mg2RuH8.

12.
Phys Chem Chem Phys ; 17(32): 20932-40, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26213893

RESUMEN

The hydrogen sorption pathways of alkali alanates were analyzed and a mechanism for the catalytic hydrogen sorption was developed. Gibbs free energy values of selected intermediate steps were calculated based on experimentally determined thermodynamic data (enthalpies and entropies) of individual hydrides: MAlH4, M3AlH6, and MH. The values of the activation energies, based on the intermediates M(+), H(-), MH, and AlH3, were obtained. The mechanism of the catalytic activity of Ti is finally clarified: we present an atomistic model, where MAlH4 desorbs hydrogen through the intermediates M(+), H(-), MH, and AlH3 to the hexahydride M3AlH6 and finally the elemental hydride MH. The catalyst acts as a bridge to transfer M(+) and H(-) from MAlH4(-) to the neighboring AlH4(-), forming AlH6(3-) and finally isolated MH, leaving AlH3 behind, which spontaneously desorbs hydrogen to give Al and 1.5H2. The proposed mechanism is symmetric in the direction of hydrogen desorption as well as readsorption processes.

13.
Angew Chem Int Ed Engl ; 54(36): 10592-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26178701

RESUMEN

Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2.

14.
Angew Chem Int Ed Engl ; 54(19): 5650-3, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25773066

RESUMEN

Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups 7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group 6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of σ-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest.

15.
Chemphyschem ; 20(10): 1157, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31106968
16.
Adv Sci (Weinh) ; : e2308318, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958510

RESUMEN

Rechargeable Ca batteries offer the advantages of high energy density, low cost, and earth-abundant constituents, presenting a viable alternative to lithium-ion batteries. However, using polymer electrolytes in practical Ca batteries is not often reported, despite its potential to prevent leakage and preserve battery flexibility. Herein, a Ca(BH4)2-based gel-polymer electrolyte (GPE) is prepared from Ca(BH4)2 and poly(tetrahydrofuran) (pTHF) and tested its performance in Ca batteries. The electrolyte demonstrates excellent stability against Ca-metal anodes and high ionic conductivity. The results of infrared spectroscopy and 1H and 11B NMR indicate that the terminal ─OH groups of pTHF reacted with BH4 - anions to form B─H─(pTHF)3 moieties, achieving cross-linking and solidification. Cyclic voltammetry measurements indicate the occurrence of reversible Ca plating/stripping. To improve the performance at high current densities, the GPE is supplemented with LiBH4 to achieve a lower overpotential in the Ca plating/stripping process. An all-solid-state Ca-metal battery with a dual-cation (Ca2+ and Li+) GPE, a Ca-metal anode, and a Li4Ti5O12 cathode sustained >200 cycles, confirming their feasibility. The results pave the way for further developing lithium salt-free Ca batteries by developing electrolyte salts with high oxidation stability and optimal electrochemical properties.

17.
J Phys Chem Lett ; 15(18): 4864-4871, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38669632

RESUMEN

The lithium-ion transport mechanism in 0.7Li(CB9H10)-0.3Li(CB11H12) complex hydride solid electrolyte was studied over a wide time-scale (ns-ms) by choosing appropriate techniques for assessing ionic motion on the desired time-scale using nuclear magnetic resonance (NMR) relaxation, AC impedance, and pulsed field gradient-NMR (PFG-NMR) measurements. The 7Li NMR line width decreased with increasing temperature, and the spin-lattice relaxation time T1 for the cation and anions showed a minimum near 303 K, indicating that the lithium ions and the anions were highly mobile. The activation energy estimated from the analysis of the NMR relaxation time matched well with the values estimated from the AC impedance and PFG-NMR. This confirms that the lithium-ion motion in 0.7Li(CB9H10)-0.3Li(CB11H12) is the same over a wide time-scale, suggesting steady Li-ion motion over a wide transport range. This understanding offers insights into strategies for designing complex hydride lithium superionic conductors.

18.
Adv Sci (Weinh) ; : e2306488, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704680

RESUMEN

Solid-state methods for cooling and heating promise a sustainable alternative to current compression cycles of greenhouse gases and inefficient fuel-burning heaters. Barocaloric effects (BCE) driven by hydrostatic pressure (p) are especially encouraging in terms of large adiabatic temperature changes (|ΔT| ≈ 10 K) and isothermal entropy changes (|ΔS| ≈ 100 J K-1 kg-1). However, BCE typically require large pressure shifts due to irreversibility issues, and sizeable |ΔT| and |ΔS| seldom are realized in a same material. Here, the existence of colossal and reversible BCE in LiCB11H12 is demonstrated near its order-disorder phase transition at ≈380 K. Specifically, for Δp ≈ 0.23 (0.10) GPa, |ΔSrev| = 280 (200) J K-1 kg-1 and |ΔTrev| = 32 (10) K are measured, which individually rival with state-of-the-art BCE figures. Furthermore, pressure shifts of the order of 0.1 GPa yield huge reversible barocaloric strengths of ≈2 J K-1 kg-1 MPa-1. Molecular dynamics simulations are performed to quantify the role of lattice vibrations, molecular reorientations, and ion diffusion on the disclosed BCE. Interestingly, lattice vibrations are found to contribute the most to |ΔS| while the diffusion of lithium ions, despite adding up only slightly to the entropy change, is crucial in enabling the molecular order-disorder phase transition.

19.
Adv Sci (Weinh) ; 10(22): e2301178, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37208795

RESUMEN

As potential alternatives to Li-ion batteries, rechargeable Ca metal batteries offer advantageous features such as high energy density, cost-effectiveness, and natural elemental abundance. However, challenges, such as Ca metal passivation by electrolytes and a lack of cathode materials with efficient Ca2+ storage capabilities, impede the development of practical Ca metal batteries. To overcome these limitations, the applicability of a CuS cathode in Ca metal batteries and its electrochemical properties are verified herein. Ex situ spectroscopy and electron microscopy results show that a CuS cathode comprising nanoparticles that are well dispersed in a high-surface-area carbon matrix can serve as an effective cathode for Ca2+ storage via the conversion reaction. This optimally functioning cathode is coupled with a tailored, weakly coordinating monocarborane-anion electrolyte, namely, Ca(CB11 H12 )2 in 1,2-dimethoxyethane/tetrahydrofuran, which enables reversible Ca plating/stripping at room temperature. The combination affords a Ca metal battery with a long cycle life of over 500 cycles and capacity retention of 92% based on the capacity of the 10th cycle. This study confirms the feasibility of the long-term operation of Ca metal anodes and can expedite the development of Ca metal batteries.

20.
Phys Chem Chem Phys ; 14(18): 6514-9, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22456532

RESUMEN

The decomposition pathway is crucial for the applicability of LiBH(4) as a hydrogen storage material. We discuss and compare the different decomposition pathways of LiBH(4) according to the thermodynamic parameters and show the experimental ways to realize them. Two pathways, i.e. the direct decomposition into boron and the decomposition via Li(2)B(12)H(12), were realized under appropriate conditions, respectively. By applying a H(2) pressure of 50 bar at 873 K or 10 bar at 700 K, LiBH(4) is forced to decompose into Li(2)B(12)H(12). In a lower pressure range of 0.1 to 10 bar at 873 K and 800 K, the concurrence of both decomposition pathways is observed. Raman spectroscopy and (11)B MAS NMR measurements confirm the formation of an intermediate Li(2)B(12)H(12) phase (mostly Li(2)B(12)H(12) adducts, such as dimers or trimers) and amorphous boron.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA