Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 127(49): 10499-10505, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38036489

RESUMEN

We propose the use of the erfgau potential as a smooth alternative to the pure Coulomb potential between nuclei and electrons in simulating the dynamics of electrons within atoms and molecules driven by high-intensity laser pulses. Even without the sophistication of pseudopotentials, by utilizing a well-designed simple approximate potential, it is possible to make the simulations computationally less demanding while keeping accuracy. By employing the erfgau potential designed for the stationary state of hydrogen-like atoms, we demonstrate that it is possible to simulate not only the high harmonic generation from a hydrogen atom but also that of multielectron systems, including molecules.

2.
Phys Rev Lett ; 123(21): 213904, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809175

RESUMEN

Intense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio. Only a few easily calculated theoretical parameters are required in addition to the experimental data.

3.
J Chem Phys ; 148(5): 051101, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29421889

RESUMEN

Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA