Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982336

RESUMEN

By their active movement and voraux phagocytosis, the trophozoites of Entamoeba histolytica constitute an excellent system to investigate the dynamics of the Endosomal Sorting Complex Required for Transport (ESCRT) protein interactions through phagocytosis. Here, we studied the proteins forming the E. histolytica ESCRT-II complex and their relationship with other phagocytosis-involved molecules. Bioinformatics analysis predicted that EhVps22, EhVps25, and EhVps36 are E. histolytica bona fide orthologues of the ESCRT-II protein families. Recombinant proteins and specific antibodies revealed that ESCRT-II proteins interact with each other, with other ESCRT proteins, and phagocytosis-involved molecules, such as the adhesin (EhADH). Laser confocal microscopy, pull-down assays, and mass spectrometry analysis disclosed that during phagocytosis, ESCRT-II accompanies the red blood cells (RBCs) from their attachment to the trophozoites until their arrival to multivesicular bodies (MVBs), changing their interactive patterns according to the time and place of the process. Knocked-down trophozoites in the Ehvps25 gene presented a 50% lower rate of phagocytosis than the controls and lower efficiency to adhere RBCs. In conclusion, ESCRT-II interacts with other molecules during prey contact and conduction throughout the phagocytic channel and trophozoites membranous system. ESCRT-II proteins are members of the protein chain during vesicle trafficking and are fundamental for the continuity and efficiency of phagocytosis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Entamoeba histolytica , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Entamoeba histolytica/genética , Proteínas Protozoarias/metabolismo , Fagocitosis , Proteínas Recombinantes/metabolismo
2.
Microb Pathog ; 162: 105349, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864144

RESUMEN

The heat shock response is a conserved mechanism that allows cells to respond and survive stress damage and is transcriptionally regulated by the heat shock factors and heat shock elements. The P-glycoprotein confer the multidrug resistance phenotype; Entamoeba histolytica has the largest multidrug resistance gene family described so far; one of these genes, the EhPgp5 gene, has an emetine-inducible expression. A functional heat shock element was localized in the EhPgp5 gene promoter, indicating transcriptional regulation by heat shock factors. In this work, we determined the oligomer state of EhHSTF7 and the recognition of the heat shock element of the EhPgp5 gene. The EhHSTF7 recombinant protein was obtained as monomer and oligomer. In silico molecular docking predicts protein-DNA binding between EhHSTF7 and 5'-GAA-3' complementary bases. The rEhHSTF7 protein specifically binds to the heat shock element of the EhPgp5 gene in gel shift assays. The competition assays with heat shock element mutants indicate that 5'-GAA-3' complementary bases are necessary for the rEhHSTF7 binding. Finally, the siRNA-mediated knockdown of Ehhstf7 expression causes downregulation of EhPgp5 expression, suggesting that EhHSTF7 is likely to play a key role in the E. histolytica multidrug resistance. This is the first report of a transcription factor that recognizes a heat shock element from a gene involved in drug resistance in parasites. However, further analysis needs to demonstrate the biological relevance of the EhHSTF7 and the rest of the heat shock factors of E. histolytica, to understand the underlying regulation of transcriptional control in response to stress.


Asunto(s)
Entamoeba histolytica , Parásitos , Animales , Entamoeba histolytica/genética , Respuesta al Choque Térmico , Simulación del Acoplamiento Molecular , Factores de Transcripción
3.
Mol Microbiol ; 114(6): 1019-1037, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32808689

RESUMEN

In this paper, we explored the presence of GATA in Entamoeba histolytica and their function as regulators of phagocytosis-related genes. Bioinformatics analyses evidenced a single 579 bp sequence encoding for a protein (EhGATA), smaller than GATA factors of other organisms. EhGATA appeared phylogenetically close to Dictyostelium discoideum and Schistosoma mansoni GATA proteins. Its sequence predicts the presence of a zinc-finger DNA binding domain and an AT-Hook motif; it also has two nuclear localization signals. By transmission electron and confocal microscopy, anti-EhGATA antibodies revealed the protein in the cytoplasm and nucleus, and 65% of nuclear signal was in the heterochromatin. EhGATA recombinant protein and trophozoites nuclear extracts bound to GATA-DNA consensus sequence. By in silico scrutiny, 1,610 gene promoters containing GATA-binding sequences appeared, including Ehadh and Ehvps32 promoters, whose genes participate in phagocytosis. Chromatin immunoprecipitation assays showed that EhGATA interact with Ehadh and Ehvps32 promoters. In EhGATA-overexpressing trophozoites (NeoGATA), the Ehadh and Ehvps32 mRNAs amount was modified, strongly supporting that EhGATA could regulate their transcription. NeoGATA trophozoites exhibited rounded shapes, high proliferation rates, and diminished erythrophagocytosis. Our results provide new insights into the role of EhGATA as a noncanonical transcription factor, regulating genes associated with phagocytosis.


Asunto(s)
Entamoeba histolytica/metabolismo , Factores de Transcripción GATA/metabolismo , Fagocitosis , Proteínas Protozoarias/metabolismo , Trofozoítos/metabolismo , Secuencias de Aminoácidos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Entamoeba histolytica/genética , Factores de Transcripción GATA/genética , Regulación de la Expresión Génica , Filogenia , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Proteínas Recombinantes/metabolismo , Trofozoítos/citología
4.
Exp Parasitol ; 222: 108077, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33465379

RESUMEN

Protein arginine methylation regulates several cellular events, including epigenetics, splicing, translation, and stress response, among others. This posttranslational modification is catalyzed by protein arginine methyltransferases (PRMTs), which according to their products are classified from type I to type IV. The type I produces monomethyl arginine and asymmetric dimethyl arginine; in mammalian there are six families of this PRMT type (PRMT1, 2, 3, 4, 6, and 8). The protozoa parasite Entamoeba histolytica has four PRMTs related to type I; three of them are similar to PRMT1, but the other one does not show significant homology to be grouped in any known PRMT family, thus we called it as atypical PRMT (EhPRMTA). Here, we showed that EhPRMTA does not contain several of the canonical amino acid residues of type I PRMTs, confirming that it is an atypical PRMT. A specific antibody against EhPRMTA localized this protein in cytoplasm. The recombinant EhPRMTA displayed catalytic activity on commercial histones and the native enzyme modified its expression level during heat shock and erythrophagocytosis. Besides, the knockdown of EhPRMTA produced an increment in cell growth, and phagocytosis, but decreases cell migration and the survival of trophozoites submitted to heat shock, suggesting that this protein is involved in regulate negatively or positively these events, respectively. Thus, results suggest that this methyltransferase regulates some cellular functions related to virulence and cell surviving.


Asunto(s)
Entamoeba histolytica/enzimología , Entamoeba histolytica/patogenicidad , Proteína-Arginina N-Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Movimiento Celular , Proliferación Celular/fisiología , Secuencia Conservada , Entamoeba histolytica/citología , Entamoeba histolytica/metabolismo , Eritrocitos/metabolismo , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Respuesta al Choque Térmico/fisiología , Fagocitosis , Procesamiento Proteico-Postraduccional/fisiología , Proteína-Arginina N-Metiltransferasas/clasificación , Proteína-Arginina N-Metiltransferasas/genética , Virulencia
5.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071922

RESUMEN

Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), and the relevance of SUMOylation in phagocytosis. Our results indicated that EhSUMO has an extended N-terminus that differentiates SUMO from ubiquitin. It also presents the GG residues at the C-terminus and the ΨKXE/D binding motif, both involved in target protein contact. Additionally, the E. histolytica genome possesses the enzymes belonging to the SUMOylation-deSUMOylation machinery. Confocal microscopy assays disclosed a remarkable EhSUMO membrane activity with convoluted and changing structures in trophozoites during erythrophagocytosis. SUMOylated proteins appeared in pseudopodia, phagocytic channels, and around the adhered and ingested erythrocytes. Docking analysis predicted interaction of EhSUMO with EhADH (an ALIX family protein), and immunoprecipitation and immunofluorescence assays revealed that the association increased during phagocytosis; whereas the EhVps32 (a protein of the ESCRT-III complex)-EhSUMO interaction appeared stronger since basal conditions. In EhSUMO knocked-down trophozoites, the bizarre membranous structures disappeared, and EhSUMO interaction with EhADH and EhVps32 diminished. Our results evidenced the presence of a SUMO gene in E. histolytica and the SUMOylation relevance during phagocytosis. This is supported by bioinformatics screening of many other proteins of E. histolytica involved in phagocytosis, which present putative SUMOylation sites and the ΨKXE/D binding motif.


Asunto(s)
Entamoeba histolytica/fisiología , Entamebiasis/metabolismo , Entamebiasis/parasitología , Interacciones Huésped-Parásitos , Fagocitosis , Proteínas Protozoarias/metabolismo , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo , Sitios de Unión , Citofagocitosis , Entamoeba histolytica/clasificación , Entamebiasis/inmunología , Eritrocitos/metabolismo , Eritrocitos/parasitología , Genoma de Protozoos , Humanos , Modelos Moleculares , Fagosomas , Filogenia , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Sumoilación
6.
Cell Microbiol ; 21(10): e13071, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219662

RESUMEN

Movement and phagocytosis are clue events in colonisation and invasion of tissues by Entamoeba histolytica, the protozoan causative of human amoebiasis. During phagocytosis, EhRab proteins interact with other functional molecules, conducting them to the precise cellular site. The gene encoding EhrabB is located in the complementary chain of the DNA fragment containing Ehcp112 and Ehadh genes, which encode for the proteins of the EhCPADH complex, involved in phagocytosis. This particular genetic organisation suggests that the three corresponding proteins may be functionally related. Here, we studied the relationship of EhRabB with EhCPADH and actin during phagocytosis. First, we obtained the EhRabB 3D structure to carry out docking analysis to predict the interaction sites involved in the EhRabB protein and the EhCPADH complex contact. By confocal microscopy, transmission electron microscopy, and immunoprecipitation assays, we revealed the interaction among these proteins when they move through different vesicles formed during phagocytosis. The role of the actin cytoskeleton in this event was also confirmed using Latrunculin A to interfere with actin polymerisation. This affected the movement of EhRabB and EhCPADH, as well as the rate of phagocytosis. Mutant trophozoites, silenced in EhrabB gene, evidenced the interaction of this molecule with EhCPADH and strengthened the role of actin during erythrophagocytosis.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Entamoeba histolytica/metabolismo , Fagocitosis/genética , Trofozoítos/ultraestructura , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Entamoeba histolytica/genética , Entamoeba histolytica/patogenicidad , Entamoeba histolytica/ultraestructura , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Mutación , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo , Proteínas de Unión al GTP rab/genética
7.
Parasitol Res ; 118(2): 517-538, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30552577

RESUMEN

Transcription factor IID (TFIID) is a cornerstone in the transcription initiation in eukaryotes. It is composed of TBP and approximately 14 different subunits named TBP-associated factors (TAFs). TFIID has a key role in transcription of many genes involved in cell proliferation, cell growth, cell cycle, cell cycle checkpoint, and various other processes as well. Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, represents a major global health concern. Our research group has previously reported the genes coding the TATA box-binding protein (EhTBP) and TBP-related factor 1 (EhTRF1), which displayed different mRNA levels in trophozoites under different stress conditions. In this work, we identified the TBP-associated factor 1 (Ehtaf1) gene in the E. histolytica genome, which possess a well-conserved DUF domain and a Bromo domain located in the middle and C-terminus of the protein, respectively. The EhTAF1-DUF domain tertiary structure is similar to the corresponding HsTAF1 DUF domain. RT-qPCR experiments with RNA isolated from trophozoites harvested at different time points of the growth curve and under different stress conditions revealed that the Ehtaf1 gene was found slightly upregulated in the death phase of growth curve, but under heat shock stress, it was found upregulated 10 times, suggesting that Ehtaf1 might have an important role in the heat shock stress response. We also found that EhTAF1 is expressed in the nucleus and cytoplasm at 37 °C, but under heat shock stress, it is overexpressed in both the nucleus and cytoplasm, and partially colocalized with EhHSP70 in cytoplasm.


Asunto(s)
Entamoeba histolytica/fisiología , Respuesta al Choque Térmico/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Entamoeba histolytica/genética , Humanos , Transporte de Proteínas , ARN Mensajero/metabolismo , Trofozoítos/metabolismo , Regulación hacia Arriba
8.
PLoS Pathog ; 12(12): e1006089, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28002502

RESUMEN

Entamoeba histolytica, the highly phagocytic protozoan causative of human amoebiasis lacks the machinery to synthesize cholesterol. Here, we investigated the presence of NPC1 and NPC2 proteins in this parasite, which are involved in cholesterol trafficking in mammals. Bioinformatics analysis revealed one Ehnpc1 and two Ehnpc2 genes. EhNPC1 appeared as a transmembrane protein and both EhNPC2 as peripheral membrane proteins. Molecular docking predicted that EhNPC1 and EhNPC2 bind cholesterol and interact with each other. Genes and proteins were identified in trophozoites. Serum pulse-chase and confocal microscopy assays unveiled that after trophozoites sensed the cholesterol source, EhNPC1 and EhNPC2 were organized around the plasma membrane in a punctuated pattern. Vesicles emerged and increased in number and size and some appeared full of cholesterol with EhNPC1 or EhNPC2 facing the extracellular space. Both proteins, but mostly EhNPC2, were found out of the cell associated with cholesterol. EhNPC1 and cholesterol formed networks from the plasma membrane to the nucleus. EhNPC2 appeared in erythrocytes that were being ingested by trophozoites, co-localizing with cholesterol of erythrocytes, whereas EhNPC1 surrounded the phagocytic cup. EhNPC1 and EhNPC2 co-localized with EhSERCA in the endoplasmic reticulum and with lysobisphosphatidic acid and EhADH (an Alix protein) in phagolysosomes. Immunoprecipitation assays confirmed the EhNPC1 and EhNPC2 association with cholesterol, EhRab7A and EhADH. Serum starved and blockage of cholesterol trafficking caused a low rate of phagocytosis and incapability of trophozoites to produce damage in the mouse colon. Ehnpc1 and Ehnpc2 knockdown provoked in trophozoites a lower intracellular cholesterol concentration and a diminished rate of phagocytosis; and Ehnpc1 silencing also produced a decrease of trophozoites movement. Trafficking of EhNPC1 and EhNPC2 during cholesterol uptake and phagocytosis as well as their association with molecules involved in endocytosis strongly suggest that these proteins play a key role in cholesterol uptake.


Asunto(s)
Colesterol/metabolismo , Entamoeba histolytica/metabolismo , Entamebiasis/metabolismo , Proteínas Protozoarias/metabolismo , Trofozoítos/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Moleculares , Simulación del Acoplamiento Molecular , Fagocitosis/fisiología , Filogenia , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/fisiología , Homología de Secuencia de Aminoácido , Virulencia/fisiología
9.
Cell Microbiol ; 19(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28656597

RESUMEN

Entamoeba histolytica trophozoites adhere to epithelium at the cell-cell contact and perturb tight junctions disturbing the transepithelial electrical resistance. Behind tight junctions are the adherens junctions (AJs) that reinforce them and the desmosomes (DSMs) that maintain the epithelium integrity. The damage produced to AJs and DMSs by this parasite is unknown. Here, we studied the effect of the trophozoites, the EhCPADH complex, and the EhCP112 recombinant enzyme (rEhCP112) on AJ and DSM proteins. We found that trophozoites degraded ß-cat, E-cad, Dsp l/ll, and Dsg-2 with the participation of EhCPADH and EhCP112. After contact of epithelial cells with trophozoites, immunofluorescence and transmission electron microscopy assays revealed EhCPADH and rEhCP112 at the intercellular space where they colocalised with ß-cat, E-cad, Dsp l/ll, and Dsg-2. Moreover, our results suggested that rEhCP112 could be internalised by caveolae and clathrin-coated vesicles. Immunoprecipitation assays showed the interaction of EhCPADH with ß-cat and Dsp l/ll. Besides, in vivo assays demonstrated that rEhCP112 concentrates at the cellular borders of the mouse intestine degrading E-cad and Dsp I/II. Our research gives the first clues on the trophozoite attack to AJs and DSMs and point out the role of the EhCPADH and EhCP112 in the multifactorial event of trophozoites virulence.


Asunto(s)
Uniones Adherentes/metabolismo , Cisteína Endopeptidasas/metabolismo , Entamoeba histolytica/enzimología , Entamoeba histolytica/metabolismo , Entamebiasis/patología , Uniones Estrechas/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Células CACO-2 , Cadherinas/metabolismo , Línea Celular , Desmosomas/metabolismo , Perros , Entamoeba histolytica/inmunología , Entamebiasis/parasitología , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/parasitología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , beta Catenina/metabolismo
10.
Mol Microbiol ; 101(2): 351-65, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27062489

RESUMEN

Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis.


Asunto(s)
Entamoeba histolytica/metabolismo , Histonas/metabolismo , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Entamoeba histolytica/genética , Epigénesis Genética/genética , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional/genética , Trofozoítos/metabolismo
11.
PLoS Pathog ; 11(7): e1005079, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26230715

RESUMEN

Here, we investigated the role of EhVps32 protein (a member of the endosomal-sorting complex required for transport) in endocytosis of Entamoeba histolytica, a professional phagocyte. Confocal microscopy, TEM and cell fractionation revealed EhVps32 in cytoplasmic vesicles and also located adjacent to the plasma membrane. Between 5 to 30 min of phagocytosis, EhVps32 was detected on some erythrocytes-containing phagosomes of acidic nature, and at 60 min it returned to cytoplasmic vesicles and also appeared adjacent to the plasma membrane. TEM images revealed it in membranous structures in the vicinity of ingested erythrocytes. EhVps32, EhADH (an ALIX family member), Gal/GalNac lectin and actin co-localized in the phagocytic cup and in some erythrocytes-containing phagosomes, but EhVps32 was scarcely detected in late phagosomes. During dextran uptake, EhVps32, EhADH and Gal/GalNac lectin, but not actin, co-localized in pinosomes. EhVps32 recombinant protein formed oligomers composed by rings and filaments. Antibodies against EhVps32 monomers stained cytoplasmic vesicles but not erythrocytes-containing phagosomes, suggesting that in vivo oligomers are formed on phagosome membranes. The involvement of EhVps32 in phagocytosis was further study in pNeoEhvps32-HA-transfected trophozoites, which augmented almost twice their rate of erythrophagocytosis as well as the membranous concentric arrays built by filaments, spirals and tunnel-like structures. Some of these structures apparently connected phagosomes with the phagocytic cup. In concordance, the EhVps32-silenced G3 trophozoites ingested 80% less erythrocytes than the G3 strain. Our results suggest that EhVps32 participates in E. histolytica phagocytosis and pinocytosis. It forms oligomers on erythrocytes-containing phagosomes, probably as a part of the scission machinery involved in membrane invagination and intraluminal vesicles formation.


Asunto(s)
Entamoeba histolytica/metabolismo , Fagocitosis/fisiología , Pinocitosis/fisiología , Proteínas Protozoarias/metabolismo , Western Blotting , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Microscopía Confocal , Microscopía Electrónica , Vacuolas/metabolismo
12.
Parasitology ; 143(1): 50-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26521708

RESUMEN

Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Proteasas de Cisteína/genética , Entamoeba histolytica/enzimología , Entamebiasis/parasitología , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Animales , Cricetinae , Proteasas de Cisteína/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/inmunología , Entamoeba histolytica/patogenicidad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Complejos Multiproteicos , Proteínas Protozoarias/metabolismo , ARN Interferente Pequeño/genética , Trofozoítos/metabolismo , Virulencia
13.
Arch Virol ; 159(5): 1067-77, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24292020

RESUMEN

Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections.


Asunto(s)
Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus Sincitiales Respiratorios/inmunología , Proteínas Virales de Fusión/metabolismo , Animales , Femenino , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/metabolismo , Vacunas Sintéticas/inmunología , Replicación Viral
14.
Parasitol Res ; 112(4): 1631-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23400794

RESUMEN

It has been described that the pathogenicity of Entamoeba histolytica is influenced by environmental conditions and that transcription profile changes occur during invasion, suggesting that gene expression may be involved in the virulence of this parasite. However, the molecular mechanisms that are implicated in the control of gene expression in this microorganism are poorly understood. Here, we showed that the expression of the EhRabB protein, a small GTPase involved in phagocytosis, is modified through the interaction with red blood cells. By ELISA, Western blot, and immunofluorescence assays, we observed that the expression of EhRabB diminished after 5 min of the interaction of trophozoites with red blood cells, but protein level was recovered at subsequent times. In the EhRabB amino acid sequence, we found two lysine residues that could be target for ubiquitin modification and trigger the degradation of this GTPase at early times of phagocytosis. The analysis of the expression of the EhrabB mRNA showed that the interaction of trophozoites with red blood cells produces a drastic diminishing in its half-life. In addition, promoter assays using the chloramphenicol acetyltransferase reporter gene and electrophoretic mobility shift assays experiments showed that the URE1 motif located in the promoter region of EhrabB is involved in the expression regulation of this gene during phagocytosis. Moreover, the immunolocalization of the URE1-binding protein during phagocytosis indicated that the transcription of the EhrabB gene is determined, at least in part, by the translocation of this transcription factor to nuclei. These results suggested that the expression of particular genes of this parasite is controlled at several stages.


Asunto(s)
Entamoeba histolytica/fisiología , Regulación de la Expresión Génica , Fagocitosis , Proteínas de Unión al GTP rab/biosíntesis , Western Blotting , Entamoeba histolytica/genética , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Estabilidad del ARN , ARN Mensajero/biosíntesis , Factores de Tiempo , Transcripción Genética
15.
iScience ; 26(1): 105765, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590172

RESUMEN

The endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate. Here, giant unilamellar vesicles, microfluidic technology, and micropipette aspiration are combined to continuously follow the ESCRT-III-mediated membrane remodeling on the single-vesicle level for the first time. With this approach, we identify different mechanisms by which a minimal set of three ESCRT-III proteins from Entamoeba histolytica reshape the membrane. These proteins modulate the membrane stiffness and spontaneous curvature to regulate bud size and generate intraluminal vesicles even in the absence of ATP. We demonstrate that the bud stability depends on the protein concentration and membrane tension. The approaches introduced here should open the road to diverse applications in synthetic biology for establishing artificial cells with several membrane compartments.

16.
Pathogens ; 12(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36986396

RESUMEN

Lysine methylation, a posttranslational modification catalyzed by protein lysine methyltransferases (PKMTs), is involved in epigenetics and several signaling pathways, including cell growth, cell migration and stress response, which in turn may participate in virulence of protozoa parasites. Entamoeba histolytica, the etiologic agent of human amebiasis, has four PKMTs (EhPKMT1 to EhPKMT4), but their role in parasite biology is unknown. Here, to obtain insight into the role of EhPKMT2, we analyzed its expression level and localization in trophozoites subjected to heat shock and during phagocytosis, two events that are related to amoeba virulence. Moreover, the effect of EhPKMT2 knockdown on those activities and on cell growth, migration and cytopathic effect was investigated. The results indicate that this enzyme participates in all these cellular events, suggesting that it could be a potential target for development of novel therapeutic strategies against amebiasis.

17.
J Biomed Biotechnol ; 2012: 657942, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22500103

RESUMEN

EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [(35)S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Entamoeba histolytica/metabolismo , Proteínas Protozoarias/química , Adhesinas Bacterianas/química , Proteínas de Unión al Calcio/química , Proteínas de Ciclo Celular/química , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Histocitoquímica , Humanos , Modelos Moleculares , Fagocitosis/fisiología , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trofozoítos/metabolismo
18.
Front Cell Infect Microbiol ; 12: 855797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389174

RESUMEN

Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.


Asunto(s)
Entamoeba histolytica , Humanos , Entamoeba histolytica/metabolismo , Proteómica , Endosomas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fagocitosis
19.
Front Cell Infect Microbiol ; 12: 835654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360117

RESUMEN

The EhVps23 protein, an orthologue of the yeast Vps23 and the mammalian TSG101 proteins, is the single member of the ESCRT-I complex of Entamoeba histolytica identified and characterized until now. EhVps23 actively participates in vesicular trafficking and phagocytosis, which influence several cellular events. In this paper, we investigated the role of EhVps23 in virulence-related functions, including the invasive capacity of trophozoites, using transfected trophozoites. Trophozoites overexpressing the EhVps23 protein (Neo-EhVps23) presented helical arrangements in the cytoplasm, similar to the ones formed by EhVps32 for scission of vesicles. By confocal and transmission electron microscopy, EhVps23 was detected in multivesicular bodies, vesicles, and the extracellular space. It was secreted in vesicles together with other proteins, including the EhADH adhesin. Probably, these vesicles carry molecules that participate in the prey capture or in cell-cell communication. Mass spectrometry of precipitates obtained using α-EhVps23 antibodies, evidenced the presence of proteins involved in motility, phagocytosis, vesicular trafficking and secretion. The study of cellular functions, revealed that Neo-EhVps23 trophozoites exhibit characteristics similar to those described for mammalian transformed cells: they grew 50% faster than the control; presented a significant higher rate of phagocytosis, and migrated five-fold faster than the control, in concordance with the low rate of migration exhibited by Ehvps23-knocked down trophozoites. In addition, Neo-EhVps23 trophozoites produced dramatic liver abscesses in experimental animals. In conclusion, our results showed that EhVps23 overexpression gave to the trophozoites characteristics that resemble cancer cells, such as increased cell proliferation, migration, and invasion. The mutant that overexpresses EhVps23 can be a good study model to explore different events related to the transformation of malignant cells.


Asunto(s)
Entamoeba histolytica , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Mamíferos/metabolismo , Fagocitosis , Proteínas Protozoarias/metabolismo , Trofozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA