Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34462355

RESUMEN

α-synuclein aggregation is present in Parkinson's disease and other neuropathologies. Among the assemblies that populate the amyloid formation process, oligomers and short fibrils are the most cytotoxic. The human Hsc70-based disaggregase system can resolve α-synuclein fibrils, but its ability to target other toxic assemblies has not been studied. Here, we show that this chaperone system preferentially disaggregates toxic oligomers and short fibrils, while its activity against large, less toxic amyloids is severely impaired. Biochemical and kinetic characterization of the disassembly process reveals that this behavior is the result of an all-or-none abrupt solubilization of individual aggregates. High-speed atomic force microscopy explicitly shows that disassembly starts with the destabilization of the tips and rapidly progresses to completion through protofilament unzipping and depolymerization without accumulation of harmful oligomeric intermediates. Our data provide molecular insights into the selective processing of toxic amyloids, which is critical to identify potential therapeutic targets against increasingly prevalent neurodegenerative disorders.


Asunto(s)
Amiloide/metabolismo , Chaperonas Moleculares/metabolismo , alfa-Sinucleína/metabolismo , Biopolímeros/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas
2.
Dis Aquat Organ ; 152: 27-36, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394138

RESUMEN

Toxoplasma gondii is a significant threat to endangered Hawaiian wildlife including birds and marine mammals. To estimate the prevalence of T. gondii in stranded cetaceans from 1997 to 2021 in Hawai'i, we tested tissues from 37 stranded spinner dolphins Stenella longirostris and 51 stranded individuals that represented 18 other cetacean species. DNA from cetacean tissue extracts were screened using a nested polymerase chain reaction (PCR) assay targeting the Toxoplasmatinae internal transcribed spacer 1 of the nuclear ribosomal DNA. A positive result was obtained in 9 tissues examined for each of 2 spinner dolphins out of 525 tissue samples analyzed by PCR. The PCR-positive spinner dolphins had disseminated acute toxoplasmosis with necrosis, inflammation, and intralesional protozoal cysts and tachyzoites in multiple organs. Discrete positive immunostaining for T. gondii was observed in all tissues tested including the adrenal gland, brain, liver, and lung. Both positive spinner dolphins were negative for cetacean morbillivirus. The T. gondii genotyping was performed by restriction fragment length polymorphism (PCR-RFLP) based on 10 genetic markers. The PCR-RFLP analysis revealed the T. gondii belonged to PCR-RFLP-ToxoDB genotype #24, previously detected in wild pig Sus scrofa in O'ahu, bobcats Lynx rufus from Mississippi, USA, and chickens Gallus gallus from Costa Rica and Brazil. These cases represent the first report of this genotype in aquatic mammals and the second and third reports of fatal disseminated T. gondii infection in stranded spinner dolphins from Hawai'i. Nearshore species, like spinner dolphins, may be at increased risk of mortality from this parasite in marine coastal waterways via sewage systems, storm water drainage, and freshwater runoff.


Asunto(s)
Stenella , Toxoplasma , Toxoplasmosis Animal , Animales , Toxoplasma/genética , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/parasitología , Hawaii/epidemiología , Prevalencia , Pollos , Genotipo , Cetáceos
3.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884786

RESUMEN

The aggregation of α-synuclein is the hallmark of a collective of neurodegenerative disorders known as synucleinopathies. The tendency to aggregate of this protein, the toxicity of its aggregation intermediates and the ability of the cellular protein quality control system to clear these intermediates seems to be regulated, among other factors, by post-translational modifications (PTMs). Among these modifications, we consider herein proteolysis at both the N- and C-terminal regions of α-synuclein as a factor that could modulate disassembly of toxic amyloids by the human disaggregase, a combination of the chaperones Hsc70, DnaJB1 and Apg2. We find that, in contrast to aggregates of the protein lacking the N-terminus, which can be solubilized as efficiently as those of the WT protein, the deletion of the C-terminal domain, either in a recombinant context or as a consequence of calpain treatment, impaired Hsc70-mediated amyloid disassembly. Progressive removal of the negative charges at the C-terminal region induces lateral association of fibrils and type B* oligomers, precluding chaperone action. We propose that truncation-driven aggregate clumping impairs the mechanical action of chaperones, which includes fast protofilament unzipping coupled to depolymerization. Inhibition of the chaperone-mediated clearance of C-truncated species could explain their exacerbated toxicity and higher propensity to deposit found in vivo.


Asunto(s)
Amiloide/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Agregación Patológica de Proteínas/patología , Sinucleinopatías/patología , alfa-Sinucleína/metabolismo , Calpaína/farmacología , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Agregado de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteolisis
4.
J Zoo Wildl Med ; 51(1): 131-139, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32212556

RESUMEN

There are limited reports of the genetic characterization of Toxoplasma gondii infecting captive macropods in North America. A novel genotype, ToxoDB PCR-RFLP genotype 263, was reported from six wallabies at a zoological facility in Virginia, USA, prompting an investigation into the genotypes from T. gondii strains infecting macropods at a zoological park in Florida, USA. Cardiac muscle and/or lung samples from an agile wallaby (Macropus agilis, n = 1), red kangaroos (Macropus rufus, n = 8), red-necked wallaby (Macropus rufogriseus, n = 1), and a tammar wallaby (Macropus eugenii, n = 1) that died between 2014 and 2018 were collected. All 11 cases were confirmed to have died from systemic toxoplasmosis by histopathology and immunohistochemical staining. Multilocus PCR-RFLP genotyping of T. gondii was performed directly on tissue samples or on parasites isolated from myocardium by mouse bioassay. Two cases of toxoplasmosis were identified as the reported novel genotype, ToxoDB PCR-RFLP genotype 263, but no common source of exposure could be identified. Five cases were identified as genotype 2 (type III strain, haplogroup 3), and four cases were identified as genotype 216, which has been previously reported in North American wildlife. There were no overt differences in lesion severity or distribution related to genotype. These results suggest that the premise was contaminated with at least three genotypes of T. gondii causing systemic toxoplasmosis in macropods. The largest cluster of fatal toxoplasmosis in macropods in the study period occurred following severe rainfall flooding of the exhibit, suggesting the transmission of T. gondii by water and pointing out the importance of this transmission mechanism. In summary, our study revealed three T. gondii outbreaks that caused significant loss of macropods within 5 yr in a zoological facility in Florida. More studies are needed to understand transmission and prevention of toxoplasmosis in sensitive zoo animals.


Asunto(s)
Genotipo , Macropodidae , Toxoplasma/genética , Toxoplasmosis Animal/parasitología , Animales , Animales de Zoológico , Florida/epidemiología , Lluvia , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/mortalidad , Toxoplasmosis Animal/transmisión
5.
Mol Biol Rep ; 46(2): 2555-2559, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734171

RESUMEN

In the present work, cell lines of different origin were exposed to BPA levels from food intake reported elsewhere. Specifically, we used an in vitro assay to determine cytotoxicity of BPA in three cell lines: MCF7 (breast cancer), PC3 (prostate cancer) and 3T3-L1 (mouse fibroblast). Cytotoxic effects were observed at concentrations higher than 50 µg/mL which is above the involuntary exposure level of BPA described before in fresh, canned and frozen foods and beverages. Furthermore, medial inhibitory concentrations (IC50) of 85.17 µg/mL and 88.48 µg/mL were observed for PC3 and 3T3-L1, respectively, and a slightly lower IC50 of 64.67 µg/mL for MCF7. These results highlight BPA's toxicity potential at current levels from food intake. The cell line-dependent divergent response to BPA reported herein is discussed.


Asunto(s)
Compuestos de Bencidrilo/efectos adversos , Compuestos de Bencidrilo/toxicidad , Línea Celular/efectos de los fármacos , Fenoles/efectos adversos , Fenoles/toxicidad , Células 3T3-L1/efectos de los fármacos , Animales , Contaminación de Alimentos , Humanos , Concentración 50 Inhibidora , Células MCF-7/efectos de los fármacos , Ratones , Células PC-3/efectos de los fármacos
6.
Immunity ; 31(5): 787-98, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19879162

RESUMEN

Although T helper 17 (Th17) cells have been found in tumor tissues, their function in cancer immunity is unclear. We found that interleukin-17A (IL-17A)-deficient mice were more susceptible to developing lung melanoma. Conversely, adoptive T cell therapy with tumor-specific Th17 cells prevented tumor development. Importantly, the Th17 cells retained their cytokine signature and exhibited stronger therapeutic efficacy than Th1 cells. Unexpectedly, therapy using Th17 cells elicited a remarkable activation of tumor-specific CD8(+) T cells, which were necessary for the antitumor effect. Th17 cells promoted dendritic cell recruitment into the tumor tissues and in draining lymph nodes increased CD8 alpha(+) dendritic cells containing tumor material. Moreover, Th17 cells promoted CCL20 chemokine production by tumor tissues, and tumor-bearing CCR6-deficient mice did not respond to Th17 cell therapy. Thus, Th17 cells elicited a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. These findings have important implications in antitumor immunotherapies.


Asunto(s)
Interleucina-17/metabolismo , Neoplasias Pulmonares/inmunología , Activación de Linfocitos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Línea Celular Tumoral , Interleucina-17/genética , Melanoma/inmunología , Ratones , Ratones Noqueados
7.
J Biol Chem ; 290(24): 14875-83, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25922079

RESUMEN

Obesity and metabolic disorders such as insulin resistance and type 2 diabetes have become a major threat to public health globally. The mechanisms that lead to insulin resistance in type 2 diabetes have not been well understood. In this study, we show that mice deficient in MAPK phosphatase 5 (MKP5) develop insulin resistance spontaneously at an early stage of life and glucose intolerance at a later age. Increased macrophage infiltration in white adipose tissue of young MKP5-deficient mice correlates with the development of insulin resistance. Glucose intolerance in MKP5-deficient mice is accompanied by significantly increased visceral adipose weight, reduced AKT activation, enhanced p38 activity, and increased inflammation in visceral adipose tissue when compared with wild-type (WT) mice. Deficiency of MKP5 resulted in increased inflammatory activation in macrophages. These findings thus demonstrate that MKP5 critically controls inflammation in white adipose tissue and the development of metabolic disorders.


Asunto(s)
Tejido Adiposo/patología , Inflamación/enzimología , Resistencia a la Insulina , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Tejido Adiposo/enzimología , Animales , Glucosa/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética
8.
Sci Rep ; 14(1): 5365, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438427

RESUMEN

In the aftermath of the COVID-19 pandemic, the evolution of the SARS-CoV-2 into a seasonal pathogen along with the emergence of new variants, underscores the need for dynamic and adaptable responses, emphasizing the importance of sustained vaccination strategies. This observer-blind, double-dummy, randomized immunobridging phase 2 study (NCT05175742) aimed to compare the immunogenicity induced by two doses of 40 µg PTX-COVID19-B vaccine candidate administered 28 days apart, with the response induced by two doses of 30 µg Pfizer-BioNTech COVID-19 vaccine (BNT162b2), administered 21 days apart, in Nucleocapsid-protein seronegative adults 18-64 years of age. Both vaccines were administrated via intramuscular injection in the deltoid muscle. Two weeks after the second dose, the neutralizing antibody (NAb) geometric mean titer ratio and seroconversion rate met the non-inferiority criteria, successfully achieving the primary immunogenicity endpoints of the study. PTX-COVID19-B demonstrated similar safety and tolerability profile to BNT162b2 vaccine. The lowest NAb response was observed in subjects with low-to-undetectable NAb at baseline or no reported breakthrough infection. Conversely, participants who experienced breakthrough infections during the study exhibited higher NAb titers. This study also shows induction of cell-mediated immune (CMI) responses by PTX-COVID19-B. In conclusion, the vaccine candidate PTX-COVID19-B demonstrated favourable safety profile along with immunogenicity similar to the active comparator BNT162b2 vaccine.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , Vacuna BNT162 , Antígenos CD59 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas de ARNm , Pandemias , SARS-CoV-2
9.
Nat Commun ; 14(1): 5436, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670029

RESUMEN

J-domain proteins tune the specificity of Hsp70s, engaging them in precise functions. Despite their essential role, the structure and function of many J-domain proteins remain largely unknown. We explore human DNAJA2, finding that it reversibly forms highly-ordered, tubular structures that can be dissociated by Hsc70, the constitutively expressed Hsp70 isoform. Cryoelectron microscopy and mutational studies reveal that different domains are involved in self-association. Oligomer dissociation into dimers potentiates its interaction with unfolded client proteins. The J-domains are accessible to Hsc70 within the tubular structure. They allow binding of closely spaced Hsc70 molecules that could be transferred to the unfolded substrate for its cooperative remodelling, explaining the efficient recovery of DNAJA2-bound clients. The disordered C-terminal domain, comprising the last 52 residues, regulates its holding activity and productive interaction with Hsc70. These in vitro findings suggest that the association equilibrium of DNAJA2 could regulate its interaction with client proteins and Hsc70.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Polímeros , Humanos , Microscopía por Crioelectrón , Proteínas del Choque Térmico HSP40 , Mutación
10.
Sci Rep ; 13(1): 8557, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236995

RESUMEN

Access to vaccines against SARS-CoV-2 virus was limited in poor countries during the COVID-19 pandemic. Therefore, a low-cost mRNA vaccine, PTX-COVID19-B, was produced and evaluated in a Phase 1 trial. PTX-COVID19-B encodes Spike protein D614G variant without the proline-proline (986-987) mutation present in other COVID-19 vaccines. The aim of the study was to evaluate safety, tolerability, and immunogenicity of PTX-COVID19-B vaccine in healthy seronegative adults 18-64 years old. The trial design was observer-blinded, randomized, placebo-controlled, and tested ascending doses of 16-µg, 40-µg, or 100-µg in a total of 60 subjects who received two intramuscular doses, 4 weeks apart. Participants were monitored for solicited and unsolicited adverse events after vaccination and were provided with a Diary Card and thermometer to report any reactogenicity during the trial. Blood samples were collected on baseline, days 8, 28, 42, 90, and 180 for serum analysis of total IgG anti-receptor binding domain (RBD)/Spike titers by ELISA, and neutralizing antibody titers by pseudovirus assay. Titers in BAU/mL were reported as geometric mean and 95% CI per cohort. After vaccination, few solicited adverse events were observed and were mild to moderate and self-resolved within 48 h. The most common solicited local and systemic adverse event was pain at the injection site, and headache, respectively. Seroconversion was observed in all vaccinated participants, who showed high antibody titers against RBD, Spike, and neutralizing activity against the Wuhan strain. Neutralizing antibody titers were also detected against Alpha, Beta, and Delta variants of concerns in a dose dependent manner. All tested doses of PTX-COVID19-B were safe, well-tolerated, and provided a strong immunogenicity response. The 40-µg dose showed fewer adverse reactions than the 100-µg dose, and therefore was selected for a Phase 2 trial, which is currently ongoing.Clinical Trial Registration number: NCT04765436 (21/02/2021). ( https://clinicaltrials.gov/ct2/show/NCT04765436 ).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2/genética , COVID-19/prevención & control , Pandemias/prevención & control , Vacunas de ARNm , Anticuerpos Neutralizantes , Inmunogenicidad Vacunal , Anticuerpos Antivirales , Método Doble Ciego
11.
J Exp Med ; 203(4): 817-20, 2006 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-16606678

RESUMEN

Costimulation regulates the activation of naive T cells as they first encounter antigens in the secondary lymphoid organs. But recently characterized costimulatory molecules of the B7 family appear to have roles beyond initial T cell activation. New evidence shows that negative costimulators expressed by tumors and normal tissues afford local protection from T cell-mediated attack.


Asunto(s)
Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Animales , Humanos
12.
J Immunol ; 185(10): 5907-14, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20944003

RESUMEN

The costimulatory molecules in the B7-CD28 families are important in the regulation of T cell activation and tolerance. The butyrophilin family of proteins shares sequence and structure homology with B7 family molecules; however, the function of the butyrophilin family in the immune system has not been defined. In this study, we performed an analysis on multiple butyrophilin molecules and found that butyrophilin-like (BTNL)1 molecule functions to dampen T cell activation. BTNL1 mRNA was broadly expressed, but its protein was only found in APCs and not T cells. The putative receptor for BTNL1 was found on activated T cells and APCs. Also, recombinant BTNL1 molecule inhibited T cell proliferation by arresting cell cycle progression. The administration of neutralizing Abs against BTNL1 provoked enhanced T cell activation and exacerbated disease in autoimmune and asthma mouse models. Therefore, BTNL1 is a critical inhibitory molecule for T cell activation and immune diseases.


Asunto(s)
Activación de Linfocitos/inmunología , Glicoproteínas de Membrana/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Asma/inmunología , Butirofilinas , Separación Celular , Electroforesis en Gel de Poliacrilamida , Encefalomielitis Autoinmune Experimental/inmunología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismo
13.
J Mol Biol ; 434(22): 167841, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36167183

RESUMEN

Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.


Asunto(s)
Proteínas del Choque Térmico HSC70 , Proteínas del Choque Térmico HSP110 , Humanos , Proteínas del Choque Térmico HSC70/química , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP110/química , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Nucleótidos/metabolismo , Agregado de Proteínas , Unión Proteica
14.
Front Immunol ; 13: 840457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273617

RESUMEN

Costimulation pathways play an essential role in T cell activation, differentiation, and regulation. CD155 expressed on antigen-presenting cells (APCs) interacts with TIGIT, an inhibitory costimulatory molecule, and CD226, an activating costimulatory molecule, on T cells. TIGIT and CD226 are expressed at varying levels depending on the T cell subset and activation state. T follicular helper cells in germinal centers (GC-Tfh) in human tonsils express high TIGIT and low CD226. However, the biological role of the CD155/TIGIT/CD226 axis in human Tfh cell biology has not been elucidated. To address this, we analyzed tonsillar CD4+ T cell subsets cultured with artificial APCs constitutively expressing CD155. Here we show that CD226 signals promote the early phase of Tfh cell differentiation in humans. CD155 signals promoted the proliferation of naïve CD4+ T cells and Tfh precursors (pre-Tfh) isolated from human tonsils and upregulated multiple Tfh molecules and decreased IL-2, a cytokine detrimental for Tfh cell differentiation. Blocking CD226 potently inhibited their proliferation and expression of Tfh markers. By contrast, while CD155 signals promoted the proliferation of tonsillar GC-Tfh cells, their proliferation required only weak CD226 signals. Furthermore, attenuating CD226 signals rather increased the expression of CXCR5, ICOS, and IL-21 by CD155-stimulated GC-Tfh cells. Thus, the importance of CD226 signals changes according to the differentiation stage of human Tfh cells and wanes in mature GC-Tfh cells. High TIGIT expression on GC-Tfh may play a role in attenuating the detrimental CD226 signals post GC-Tfh cell maturation.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T , Receptores Inmunológicos , Células T Auxiliares Foliculares , Antígenos de Diferenciación de Linfocitos T/metabolismo , Diferenciación Celular , Humanos , Activación de Linfocitos , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T
15.
Vet Parasitol Reg Stud Reports ; 36: 100801, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36436890

RESUMEN

Consumption of undercooked meat is one of the main transmission routes for Toxoplasma gondii worldwide. In the South American Andes, the guinea pig (Cavia porcellus) is a domestic rodent representing one of the main sources of animal proteins for indigenous communities. Although T. gondii infects a wide range of rodents worldwide, the natural impact of the infection on guinea pig populations is still unknown. Our study conducted in guinea pigs that were bred in traditional systems located in the village of José María Hernández (Nariño, Colombia) revealed the presence of T. gondii antibodies in 33.3% (23 out of 69) guinea pigs evaluated, with a cut-off point of 25 for the modified direct agglutination test. Conventional PCR detection of the T. gondii-specific RE fragment (529 bp) in 207 collected tissues demonstrated the presence of T. gondii DNA in several organs, including the brain (16/69), muscle (12/69), and heart (4/69), with an overall molecular detection frequency of 27.5% (19 out of 69 guinea pigs). This is the first report of natural infection of guinea pigs with T. gondii, demonstrating their potential epidemiological role in transmitting the infection to autochthonous populations.


Asunto(s)
Enfermedades de los Roedores , Enfermedades de los Porcinos , Toxoplasma , Toxoplasmosis Animal , Porcinos , Animales , Cobayas , Humanos , Toxoplasma/genética , Toxoplasmosis Animal/diagnóstico , Toxoplasmosis Animal/epidemiología , Colombia/epidemiología , Enfermedades de los Porcinos/diagnóstico , América del Sur , Roedores
16.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044832

RESUMEN

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/efectos adversos , Canadá , Línea Celular , Cricetinae , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Liposomas/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas , Glicoproteína de la Espiga del Coronavirus/genética , Células TH1/inmunología
17.
J Immunol ; 182(8): 4516-20, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342624

RESUMEN

T cell activation and tolerance are delicately regulated by costimulatory molecules. Although B and T lymphocyte attenuator (BTLA) has been shown as a negative regulator for T cell activation, its role in peripheral T cell tolerance induction in vivo has not been addressed. In this study, we generated a novel strain of BTLA-deficient mice and used three different models to characterize the function of BTLA in controlling T cell tolerance. In an oral tolerance model, BTLA-deficient mice were found resistant to the induction of T cell tolerance to an oral Ag. Moreover, compared with wild-type OT-II cells, BTLA(-/-) OT-II cells were less susceptible to tolerance induction by a high-dose OVA peptide administered i.v. Finally, BTLA(-/-) OT-I cells caused autoimmune diabetes in RIP-mOVA recipient mice. Our results thus demonstrate an important role for BTLA in the induction of peripheral tolerance of both CD4(+) and CD8(+) T cells in vivo.


Asunto(s)
Tolerancia Inmunológica/inmunología , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Linfocitos T/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Ratones , Ratones Noqueados , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética
18.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685723

RESUMEN

Neurodegenerative diseases (NDs) are increasingly positioned as leading causes of global deaths. The accelerated aging of the population and its strong relationship with neurodegeneration forecast these pathologies as a huge global health problem in the upcoming years. In this scenario, there is an urgent need for understanding the basic molecular mechanisms associated with such diseases. A major molecular hallmark of most NDs is the accumulation of insoluble and toxic protein aggregates, known as amyloids, in extracellular or intracellular deposits. Here, we review the current knowledge on how molecular chaperones, and more specifically a ternary protein complex referred to as the human disaggregase, deals with amyloids. This machinery, composed of the constitutive Hsp70 (Hsc70), the class B J-protein DnaJB1 and the nucleotide exchange factor Apg2 (Hsp110), disassembles amyloids of α-synuclein implicated in Parkinson's disease as well as of other disease-associated proteins such as tau and huntingtin. We highlight recent studies that have led to the dissection of the mechanism used by this chaperone system to perform its disaggregase activity. We also discuss whether this chaperone-mediated disassembly mechanism could be used to solubilize other amyloidogenic substrates. Finally, we evaluate the implications of the chaperone system in amyloid clearance and associated toxicity, which could be critical for the development of new therapies.


Asunto(s)
Amiloide/metabolismo , Chaperonas Moleculares/metabolismo , Agregado de Proteínas , Amiloide/toxicidad , Humanos , Modelos Biológicos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , alfa-Sinucleína/metabolismo
19.
J Biol Chem ; 284(45): 30815-24, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19748894

RESUMEN

MAPKs are evolutionarily conserved immune regulators. MAPK phosphatases (MKPs) that negatively regulate MAPK activities have recently emerged as critical players in both innate and adaptive immune responses. MKP-1, also known as DUSP1, was previously shown to negatively regulate innate immunity by inhibiting pro-inflammatory cytokine production. Here, we found that MKP-1 is necessary in T cell activation and function. MKP-1 deficiency in T cells impaired the activation, proliferation, and function of T cells in vitro, associated with enhanced activation of JNK and reduced NFATc1 translocation into the nucleus. Consistently, MKP-1(-/-) mice were defective in anti-influenza immunity in vivo and resistant to experimental autoimmune encephalomyelitis. Our results thus demonstrate that MKP-1 is a critical positive regulator of T cell activation and function and may be targeted in treatment of autoimmune diseases.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/inmunología , Activación de Linfocitos , Linfocitos T/enzimología , Linfocitos T/inmunología , Animales , Proliferación Celular , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Virus de la Influenza A/fisiología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Transporte de Proteínas , Linfocitos T/citología
20.
J Exp Med ; 197(12): 1635-44, 2003 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-12796471

RESUMEN

Experiments in nonobese diabetic (NOD) mice that lacked expression of glutamic acid decarboxylase (GAD) in beta cells have suggested that GAD represents an autoantigen essential for initiating and maintaining the diabetogenic immune response. Several attempts of inducing GAD-specific recessive tolerance to support this hypothesis have failed. Here we report on successful tolerance induction by expressing a modified form of GAD under control of the invariant chain promoter resulting in efficient epitope display. In spite of specific tolerance insulitis and diabetes occurred with normal kinetics indicating that GAD is not an essential autoantigen in the pathogenesis of diabetes.


Asunto(s)
Autoantígenos , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 1/inmunología , Glutamato Descarboxilasa/inmunología , Glutamato Descarboxilasa/metabolismo , Tolerancia Inmunológica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Epítopos/inmunología , Epítopos/metabolismo , Femenino , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/genética , Humanos , Insulina/inmunología , Insulina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA