Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 63(10): 17, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36169949

RESUMEN

Purpose: The purpose of this study was to compare axial and peripheral eye elongation during myopia therapy with multifocal soft contact lenses. Methods: Participants were 294 children (177 [60.2%] girls) age 7 to 11 years old with between -0.75 diopters (D) and -5.00 D of myopia (spherical component) and less than 1.00 D astigmatism at baseline. Children were randomly assigned to Biofinity soft contact lenses for 3 years: D-designs with a +2.50 D addition, +1.50 D addition, or single vision. Five measurements of eye length were averaged at the fovea, ±20°, and ±30° in the horizontal and vertical meridians of the right eye using the Haag-Streit Lenstar LS 900. Results: Axial elongation over 3 years with single vision contact lenses was greater than peripheral elongation in the superior and temporal retinal qeuadrants by 0.07 mm (95% confidence interval [CI] = 0.05 to 0.09 mm) and 0.06 mm (95% CI = 0.03 to 0.09 mm) and similar in the inferior and nasal quadrants. Axial elongation with +2.50 D addition multifocal contact lenses was similar to peripheral elongation in the superior retinal quadrant and less than peripheral elongation in the inferior and nasal quadrants by -0.04 mm (95% CI = -0.06 to -0.01 mm) and -0.06 mm (95% CI = -0.09 to -0.02 mm). Conclusions: Wearing +2.50 D addition multifocal contact lenses neutralized or reversed the increase in retinal steepness with single vision lenses. The mismatch between greater inhibition of elongation at the fovea than peripherally despite greater peripheral myopic defocus suggests that optical myopia therapy may operate through extensive spatial integration or mechanisms other than local defocus.


Asunto(s)
Lentes de Contacto Hidrofílicos , Miopía , Baja Visión , Niño , Anteojos , Femenino , Humanos , Masculino , Miopía/terapia , Refracción Ocular , Retina
2.
Invest Ophthalmol Vis Sci ; 61(12): 22, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091116

RESUMEN

Purpose: Human and animal studies suggest that light-mediated dopamine release may underlie the protective effect of time outdoors on myopia development. Melanopsin-containing retinal ganglion cells may be involved in this process by integrating ambient light exposure and regulating retinal dopamine levels. The study evaluates this potential involvement by examining whether melanopsin-driven pupillary responses are associated with adult refractive error. Methods: Subjects were 45 young adults (73% female, 24.1 ± 1.8 years) with refractive errors ranging from -6.33 D to +1.70 D. The RAPDx (Konan Medical) pupillometer measured normalized pupillary responses to three forms of square-wave light pulses alternating with darkness at 0.1 Hz: alternating long wavelength (red, peak at 608 nm) and short wavelength (blue, peak at 448 nm), followed by red only and then blue only. Results: Non-myopic subjects displayed greater pupillary constriction in the blue-only condition and slower redilation following blue light offset than subjects with myopia (P = 0.011). Pupillary responses were not significantly different between myopic and non-myopic subjects in the red-only condition (P = 0.15). More hyperopic/less myopic refractive error as a continuous variable was linearly related to larger increases in pupillary constriction in response to blue-only stimuli (r = 0.48, P = 0.001). Conclusions: Repeated light exposures to blue test stimuli resulted in an adaptation in the pupillary response (more constriction and slower redilation), presumably due to increased melanopsin-mediated input in more hyperopic/less myopic adults. This adaptive property supports a possible role for these ganglion cells in the protective effects of time outdoors on myopia development.


Asunto(s)
Hiperopía/fisiopatología , Miopía/fisiopatología , Reflejo Pupilar/fisiología , Opsinas de Bastones/metabolismo , Adulto , Femenino , Humanos , Luz , Masculino , Pupila/efectos de la radiación , Células Ganglionares de la Retina/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA