Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioessays ; 39(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28092121

RESUMEN

How the formidable diversity of forms emerges from developmental and evolutionary processes is one of the most fascinating questions in biology. The homeodomain-containing Hox proteins were recognized early on as major actors in diversifying animal body plans. The molecular mechanisms underlying how this transcription factor family controls a large array of context- and cell-specific biological functions is, however, still poorly understood. Clues to functional diversity have emerged from studies exploring how Hox protein activity is controlled through interactions with PBC class proteins, also evolutionary conserved HD-containing proteins. Recent structural data and molecular dynamic simulations add further mechanistic insights into Hox protein mode of action, suggesting that flexible folding of protein motifs allows for plastic protein interaction. As we discuss in this review, these findings define a novel type of Hox-PBC interaction, weak and dynamic instead of strong and static, hence providing novel clues to understanding Hox transcriptional specificity and diversity.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencias de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/fisiología , Humanos , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 109(23): 8954-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22611190

RESUMEN

Phages of the Caudovirales order possess a tail that recognizes the host and ensures genome delivery upon infection. The X-ray structure of the approximately 1.8 MDa host adsorption device (baseplate) from the lactococcal phage TP901-1 shows that the receptor-binding proteins are pointing in the direction of the host, suggesting that this organelle is in a conformation ready for host adhesion. This result is in marked contrast with the lactococcal phage p2 situation, whose baseplate is known to undergo huge conformational changes in the presence of Ca(2+) to reach its active state. In vivo infection experiments confirmed these structural observations by demonstrating that Ca(2+) ions are required for host adhesion among p2-like phages (936-species) but have no influence on TP901-1-like phages (P335-species). These data suggest that these two families rely on diverse adhesion strategies which may lead to different signaling for genome release.


Asunto(s)
Caudovirales/genética , Modelos Moleculares , Proteínas de la Cola de los Virus/genética , Acoplamiento Viral , Bacteriófago P2/genética , Calcio/metabolismo , Cristalografía , Lactococcus lactis/virología , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(3): 811-6, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22207627

RESUMEN

Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small terminase protein from the Siphoviridae bacteriophage SF6, comprising the N-terminal DNA binding, the oligomerization core, and the C-terminal ß-barrel domains, reveals a nine-subunit circular assembly in which the DNA-binding domains are arranged around the oligomerization core in a highly flexible manner. Mass spectrometry analysis and four further crystal structures show that, although the full-length protein exclusively forms nine-subunit assemblies, protein constructs missing the C-terminal ß-barrel form both nine-subunit and ten-subunit assemblies, indicating the importance of the C terminus for defining the oligomeric state. The mechanism by which a ring-shaped small terminase oligomer binds viral DNA has not previously been elucidated. Here, we probed binding in vitro by using EPR and surface plasmon resonance experiments, which indicated that interaction with DNA is mediated exclusively by the DNA-binding domains and suggested a nucleosome-like model in which DNA binds around the outside of the protein oligomer.


Asunto(s)
ADN/metabolismo , Proteínas Motoras Moleculares/química , Siphoviridae/fisiología , Ensamble de Virus/fisiología , ADN/química , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Espectrometría de Masas , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Eliminación de Secuencia , Siphoviridae/enzimología
4.
Nucleic Acids Res ; 40(7): 3245-58, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22140099

RESUMEN

Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called 'addiction modules', have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin ß-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin ß-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , ADN Bacteriano/química , Rickettsia felis/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
5.
J Biol Chem ; 287(45): 38190-9, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22898822

RESUMEN

Vibrio cholerae is the cause of the diarrheal disease cholera. V. cholerae produces RtxA, a large toxin of the MARTX family, which is targeted to the host cell cytosol, where its actin cross-linking domain (ACD) cross-links G-actin, leading to F-actin depolymerization, cytoskeleton rearrangements, and cell rounding. These effects on the cytoskeleton prevent phagocytosis and bacterial engulfment by macrophages, thus preventing V. cholerae clearance from the gut. The V. cholerae Type VI secretion-associated VgrG1 protein also contains a C-terminal ACD, which shares 61% identity with MARTX ACD and has been shown to covalently cross-link G-actin. Here, we purified the VgrG1 C-terminal domain and determined its crystal structure. The VgrG1 ACD exhibits a V-shaped three-dimensional structure, formed of 12 ß-strands and nine α-helices. Its active site comprises five residues that are conserved in MARTX ACD toxin, within a conserved area of ∼10 Å radius. We showed that less than 100 ACD molecules are sufficient to depolymerize the actin filaments of a fibroblast cell in vivo. Mutagenesis studies confirmed that Glu-16 is critical for the F-actin depolymerization function. Co-crystals with divalent cations and ATP reveal the molecular mechanism of the MARTX/VgrG toxins and offer perspectives for their possible inhibition.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Estructura Terciaria de Proteína , Vibrio cholerae/metabolismo , Actinas/química , Actinas/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Proteínas Bacterianas/genética , Sitios de Unión/genética , Western Blotting , Línea Celular , Cristalografía por Rayos X , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conejos , Vibrio cholerae/genética
6.
PLoS Pathog ; 7(11): e1002386, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102820

RESUMEN

Type VI secretion systems (T6SS) are trans-envelope machines dedicated to the secretion of virulence factors into eukaryotic or prokaryotic cells, therefore required for pathogenesis and/or for competition towards neighboring bacteria. The T6SS apparatus resembles the injection device of bacteriophage T4, and is anchored to the cell envelope through a membrane complex. This membrane complex is composed of the TssL, TssM and TagL inner membrane anchored proteins and of the TssJ outer membrane lipoprotein. Here, we report the crystal structure of the enteroaggregative Escherichia coli Sci1 TssJ lipoprotein, a two four-stranded ß-sheets protein that exhibits a transthyretin fold with an additional α-helical domain and a protruding loop. We showed that TssJ contacts TssM through this loop since a loop depleted mutant failed to interact with TssM in vitro or in vivo. Biophysical analysis of TssM and TssJ-TssM interaction suggest a structural model of the membrane-anchored outer shell of T6SS. Collectively, our results provide an improved understanding of T6SS assembly and encourage structure-aided drug design of novel antimicrobials targeting T6SS.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Sistemas de Secreción Bacterianos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Lipopéptidos/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/metabolismo , Lipopéptidos/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Virulencia/química , Factores de Virulencia/metabolismo
7.
PLoS Pathog ; 7(5): e1002059, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21637813

RESUMEN

Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2'-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Šresolution, which shows nsp10 bound to nsp16 through a ∼930 Ų surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in +RNA viruses.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Viral/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Cristalización , Magnesio/metabolismo , Mutación/genética , Plásmidos , Unión Proteica , S-Adenosilmetionina/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-23545641

RESUMEN

DNA packaging in tailed bacteriophages and in evolutionarily related herpesviruses is controlled by a viral-encoded terminase. As in a number of other phages, in the Bacillus subtilis bacteriophages SF6 and SPP1 the terminase complex consists of two proteins: G1P and G2P. The crystal structure of the N-terminal DNA-binding domain of the bacteriophage SF6 small terminase subunit G1P is reported. Structural comparison with other DNA-binding proteins allows a general model for the interaction of G1P with the packaging-initiation site to be proposed.


Asunto(s)
Adenosina Trifosfatasas/química , Fagos de Bacillus/enzimología , ADN/química , Endodesoxirribonucleasas/química , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
9.
Proc Natl Acad Sci U S A ; 107(15): 6852-7, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20351260

RESUMEN

Siphoviridae is the most abundant viral family on earth which infects bacteria as well as archaea. All known siphophages infecting gram+ Lactococcus lactis possess a baseplate at the tip of their tail involved in host recognition and attachment. Here, we report analysis of the p2 phage baseplate structure by X-ray crystallography and electron microscopy and propose a mechanism for the baseplate activation during attachment to the host cell. This approximately 1 MDa, Escherichia coli-expressed baseplate is composed of three protein species, including six trimers of the receptor-binding protein (RBP). RBPs host-recognition domains point upwards, towards the capsid, in agreement with the electron-microscopy map of the free virion. In the presence of Ca(2+), a cation mandatory for infection, the RBPs rotated 200 degrees downwards, presenting their binding sites to the host, and a channel opens at the bottom of the baseplate for DNA passage. These conformational changes reveal a novel siphophage activation and host-recognition mechanism leading ultimately to DNA ejection.


Asunto(s)
Bacteriófago P2/metabolismo , Proteínas de la Cola de los Virus/química , Sitios de Unión , Calcio/química , Cationes , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Lactococcus lactis/virología , Microscopía Electrónica/métodos , Conformación Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Unión Proteica , Conformación Proteica
10.
J Virol ; 85(10): 4812-21, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21367903

RESUMEN

The crenarchaeal Acidianus two-tailed virus (ATV) undergoes a remarkable morphological development, extracellularly and independently of host cells, by growing long tails at each end of a spindle-shaped virus particle. Initial work suggested that an intermediate filament-like protein, p800, is involved in this process. We propose that an additional chaperone system is required, consisting of a MoxR-type AAA ATPase (p618) and a von Willebrand domain A (VWA)-containing cochaperone, p892. Both proteins are absent from the other known bicaudavirus, STSV1, which develops a single tail intracellularly. p618 exhibits ATPase activity and forms a hexameric ring complex that closely resembles the oligomeric complex of the MoxR-like protein RavA (YieN). ATV proteins p387, p653, p800, and p892 interact with p618, and with the exception of p800, all bind to DNA. A model is proposed to rationalize the interactions observed between the different protein and DNA components and to explain their possible structural and functional roles in extracellular tail development.


Asunto(s)
Acidianus/virología , Virus ADN/fisiología , Chaperonas Moleculares/metabolismo , Proteínas Virales/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Virus ADN/ultraestructura , ADN Viral/metabolismo , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Alineación de Secuencia , Virión/fisiología , Virión/ultraestructura
11.
J Virol ; 84(10): 5025-31, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20200253

RESUMEN

Acidianus filamentous virus 1 (AFV1) (Lipothrixviridae) is an enveloped filamentous virus that was characterized from a crenarchaeal host. It infects Acidianus species that thrive in the acidic hot springs (>85 degrees C and pH <3) of Yellowstone National Park, WY. The AFV1 20.8-kb, linear, double-stranded DNA genome encodes 40 putative open reading frames whose sequences generally show little similarity to other genes in the sequence databases. Because three-dimensional structures are more conserved than sequences and hence are more effective at revealing function, we set out to determine protein structures from putative AFV1 open reading frames (ORF). The crystal structure of ORF157 reveals an alpha+beta protein with a novel fold that remotely resembles the nucleotidyltransferase topology. In vitro, AFV1-157 displays a nuclease activity on linear double-stranded DNA. Alanine substitution mutations demonstrated that E86 is essential to catalysis. AFV1-157 represents a novel class of nuclease, but its exact role in vivo remains to be determined.


Asunto(s)
Acidianus/virología , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Lipothrixviridae/química , Lipothrixviridae/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cristalografía por Rayos X , ADN/metabolismo , Análisis Mutacional de ADN , Desoxirribonucleasas/genética , Manantiales de Aguas Termales/microbiología , Lipothrixviridae/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta , Estructura Terciaria de Proteína , Proteínas Virales/genética
12.
BMC Biochem ; 12: 61, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22132756

RESUMEN

BACKGROUND: Caseinolytic proteases (ClpPs) are barrel-shaped self-compartmentalized peptidases involved in eliminating damaged or short-lived regulatory proteins. The Mycobacterium tuberculosis (MTB) genome contains two genes coding for putative ClpPs, ClpP1 and ClpP2 respectively, that are likely to play a role in the virulence of the bacterium. RESULTS: We report the first biochemical characterization of ClpP1 and ClpP2 peptidases from MTB. Both proteins were produced and purified in Escherichia coli. Use of fluorogenic model peptides of diverse specificities failed to show peptidase activity with recombinant mycobacterial ClpP1 or ClpP2. However, we found that ClpP1 had a proteolytic activity responsible for its own cleavage after the Arg8 residue and cleavage of ClpP2 after the Ala12 residue. In addition, we showed that the absence of any peptidase activity toward model peptides was not due to an obstruction of the entry pore by the N-terminal flexible extremity of the proteins, nor to an absolute requirement for the ClpX or ClpC ATPase complex. Finally, we also found that removing the putative propeptides of ClpP1 and ClpP2 did not result in cleavage of model peptides. We have also shown that recombinant ClpP1 and ClpP2 do not assemble in the conventional functional tetradecameric form but in lower order oligomeric species ranging from monomers to heptamers. The concomitant presence of both ClpP1 and ClpP2 did not result in tetradecameric assembly. Deleting the amino-terminal extremity of ClpP1 and ClpP2 (the putative propeptide or entry gate) promoted the assembly in higher order oligomeric species, suggesting that the flexible N-terminal extremity of mycobacterial ClpPs participated in the destabilization of interaction between heptamers. CONCLUSION: Despite the conservation of a Ser protease catalytic triad in their primary sequences, mycobacterial ClpP1 and ClpP2 do not have conventional peptidase activity toward peptide models and display an unusual mechanism of self-assembly. Therefore, the mechanism underlying their peptidase and proteolytic activities might differ from that of other ClpP proteolytic complexes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Multimerización de Proteína , Proteolisis , Alineación de Secuencia , Serina Endopeptidasas/genética
13.
Biochemistry ; 49(43): 9140-51, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20849112

RESUMEN

GAGA is a Drosophila transcription factor that shows a high degree of post-translational modification. Here, we show that GAGA factor is acetylated in vivo. Lysine residues K325 and K373 on basic regions BR1 and BR3 of the DNA binding domain, respectively, are shown to be acetylated by PCAF. While BR1 is strictly required to stabilize DNA binding, BR3 is dispensable. However, acetylation of both lysine residues, either alone or in combination, weakens the binding to DNA. Despite the high degree of conservation of K325 and K373 in flies, their mutation to glutamine does not affect DNA binding. Molecular dynamics simulations, using acetylated K325 and a K325Q mutant of GAGA DNA binding domain in complex with DNA, are fully consistent with these results and provide a thermodynamic explanation for this observation. We propose that while K325 and K373 are not essential for DNA binding they have been largely conserved for regulatory purposes, thus highlighting a key regulatory system for GAGA factor in flies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Sitios de Unión , Línea Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Escherichia coli , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo , Unión Proteica
14.
Biochemistry ; 49(49): 10543-52, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21067184

RESUMEN

The antitumor antibiotics mithramycin A and chromomycin A(3) bind reversibly to the minor groove of G/C-rich regions in DNA in the presence of dications such as Mg(2+), and their antiproliferative activity has been associated with their ability to block the binding of certain transcription factors to gene promoters. Despite their biological activity, their use as anticancer agents is limited by severe side effects. Therefore, in our pursuit of new structurally related molecules showing both lower toxicity and higher biological activity, we have examined the binding to DNA of six analogues that we have obtained by combinatorial biosynthetic procedures in the producing organisms. All these molecules bear a variety of changes in the side chain attached to C-3 of the chromophore. The spectroscopic characterization of their binding to DNA followed by the evaluation of binding parameters and associated thermodynamics revealed differences in their binding affinity. DNA binding was entropically driven, dominated by the hydrophobic transfer of every compound from solution into the minor groove of DNA. Among the analogues, mithramycin SDK and chromomycin SDK possessed the higher DNA binding affinities.


Asunto(s)
Cromomicinas/química , Cromomicinas/metabolismo , Técnicas Químicas Combinatorias , ADN/metabolismo , Plicamicina/análogos & derivados , Plicamicina/metabolismo , Animales , Sitios de Unión/fisiología , Cromomicinas/biosíntesis , Técnicas Químicas Combinatorias/métodos , ADN/química , Masculino , Modelos Moleculares , Conformación de Ácido Nucleico , Salmón , Testículo/química , Termodinámica
15.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 5): 522-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20445227

RESUMEN

The core of the exosome, a versatile multisubunit RNA-processing enzyme found in archaea and eukaryotes, includes a ring of six RNase PH subunits. This basic architecture is homologous to those of the bacterial and archaeal RNase PHs and the bacterial polynucleotide phosphorylase (PNPase). While all six RNase PH monomers are catalytically active in the homohexameric RNase PH, only half of them are functional in the bacterial PNPase and in the archaeal exosome core and none are functional in the yeast and human exosome cores. Here, the crystal structure of the RNase PH ring from the exosome of the anaerobic methanogenic archaeon Methanothermobacter thermautotrophicus is described at 2.65 A resolution. Free phosphate anions were found for the first time in the active sites of the RNase PH subunits of an exosome structure and provide structural snapshots of a critical intermediate in the phosphorolytic degradation of RNA by the exosome. Furthermore, the present structure highlights the plasticity of the surfaces delineating the polar regions of the RNase PH ring of the exosome, a feature that can facilitate both interaction with the many cofactors involved in exosome function and the processive activity of this enzyme.


Asunto(s)
Methanobacteriaceae/enzimología , Ribonucleasas/química , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Fosfatos/metabolismo , Unión Proteica , Ribonucleasas/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 3): 304-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20179342

RESUMEN

The structure of a 14 kDa structural protein from Acidianus two-tailed virus (ATV) was solved by single-wavelength anomalous diffraction (SAD) phasing using X-ray data collected at 2.0 A wavelength. Although the anomalous signal from methionine sulfurs was expected to suffice to solve the structure, one chloride ion turned out to be essential to achieve phasing. The minimal data requirements and the relative contributions of the Cl and S atoms to phasing are discussed. This work supports the feasibility of a systematic approach for the solution of protein crystal structures by SAD based on intrinsic protein light atoms along with associated chloride ions from the solvent. In such cases, data collection at long wavelengths may be a time-efficient alternative to selenomethionine substitution and heavy-atom derivatization.


Asunto(s)
Acidianus/química , Cloro/química , Cristalografía por Rayos X/métodos , Azufre/química , Proteínas Estructurales Virales/análisis , Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Selenometionina/química , Proteínas Estructurales Virales/química
17.
Mol Microbiol ; 73(6): 1156-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19719513

RESUMEN

Lactococcus lactis, a Gram-positive bacterium widely used by the dairy industry, is subject to infection by a diverse population of virulent phages, predominantly by those of the 936 group, including the siphovirus phage p2. Confronted with the negative impact of phage infection on milk fermentation, the study of the biology of lactococcal provides insight from applied and fundamental perspectives. We decided to characterize the product of the orf34 gene from lactococcus phage p2, which was considered as a candidate single-stranded DNA binding protein (SSB) due to its localization downstream of a gene coding for a single-strand annealing protein. Two-dimensional gel electrophoresis showed that ORF34(p2) is expressed in large amounts during the early phases of phage infection, suggesting an important role in this process. Gel-shift assays, surface plasmon resonance and atomic force microscopy demonstrated that ORF34(p2) interacts with single-strand DNA with nanomolar affinity. We also determined the crystal structure of ORF34(p2) and showed that it bears a variation of the typical oligonucleotide/oligosaccharide binding-fold of SSBs. Finally, we found that ORF34(p2) is able to stimulate Escherichia coli RecA-mediated homologous recombination. The specific structural and biochemical properties that distinguish ORF34(p2) from other SSB proteins are discussed.


Asunto(s)
Bacteriófago P2/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófago P2/genética , Cristalografía por Rayos X , ADN de Cadena Simple/metabolismo , ADN Viral/química , ADN Viral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Electroforesis en Gel Bidimensional , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Cinética , Lactococcus lactis/virología , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Rec A Recombinasas/metabolismo , Recombinación Genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Resonancia por Plasmón de Superficie , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
18.
BMC Struct Biol ; 9: 32, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19454024

RESUMEN

BACKGROUND: Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown. RESULTS: We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner. CONCLUSION: It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.


Asunto(s)
Proteínas Arqueales/química , Methanobacteriaceae/metabolismo , ARN/química , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Humanos , Datos de Secuencia Molecular , Unión Proteica , Proteínas/química , ARN/metabolismo , Alineación de Secuencia
19.
Nucleic Acids Res ; 35(10): 3504-15, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17478495

RESUMEN

Redox changes are one of the factors that influence cell-cycle progression and that control the processes of cellular proliferation, differentiation, senescence and apoptosis. Proteins regulated through redox-sensitive cysteines have been characterized but specific 'sulphydryl switches' in replication proteins remain to be identified. In bovine papillomavirus type-1, DNA replication begins when the viral transcription factor E2 recruits the viral initiator protein E1 to the origin of DNA replication (ori). Here we show that a novel dimerization interface in the E2 transcription activation domain is stabilized by a disulphide bond. Oxidative cross-linking via Cys57 sequesters the interaction surface between E1 and E2, preventing pre-initiation and replication initiation complex formation. Our data demonstrate that as well as a mechanism for regulating DNA binding, redox reactions can control replication by modulating the tertiary structure of critical protein factors using a specific redox sensor.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/química , Transactivadores/química , Proteínas Virales/química , Cristalografía por Rayos X , Cisteína/química , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Modelos Moleculares , Oxidación-Reducción , Estructura Terciaria de Proteína , Origen de Réplica , Transactivadores/metabolismo , Proteínas Virales/metabolismo
20.
Nucleic Acids Res ; 35(7): 2215-26, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17369273

RESUMEN

The antitumour antibiotic mithramycin A (MTA) is a DNA minor-groove binding ligand. It binds to C/G-rich tracts as a dimer that forms in the presence of divalent cations such as Mg(2+). Differential scanning calorimetry, UV thermal denaturation, isothermal titration calorimetry and competition dialysis were used, together with computations of the hydrophobic free energy of binding, to determine the thermodynamic profile of MTA binding to DNA. The results were compared to those obtained in parallel using the structurally related mithramycin SK (MSK). The binding of MTA to salmon testes DNA determined by UV melting studies (K(obs) = 1.2 (+/-0.3) x 10(5) M(-1)) is tighter than that of MSK (2.9 (+/-1.0) x 10(4) M(-1)) at 25 degrees C. Competition dialysis studies showed a tighter MTA binding to both salmon testes DNA (42% C + G) and Micrococcus lysodeikticus DNA (72% C + G). The thermodynamic analysis of binding data at 25 degrees C shows that the binding of MTA and MSK to DNA is entropically driven, dominated by the hydrophobic transfer of the antibiotics from solution to the DNA-binding site. Direct molecular recognition between MTA or MSK and DNA through hydrogen bonding and van der Waals contacts may also contribute significantly to complex formation.


Asunto(s)
Antibióticos Antineoplásicos/química , ADN/química , Entropía , Secuencia Rica en GC , Plicamicina/análogos & derivados , Calorimetría , Diálisis , Calor , Modelos Moleculares , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Plicamicina/química , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA