Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409298

RESUMEN

Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.


Asunto(s)
Cromátides , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Inestabilidad Genómica , Humanos , Procesamiento Postranscripcional del ARN , Cohesinas
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361590

RESUMEN

Pre-mRNA splicing plays a fundamental role in securing protein diversity by generating multiple transcript isoforms from a single gene. Recently, it has been shown that specific G-patch domain-containing proteins are critical cofactors involved in the regulation of splicing processes. In this study, using the knock-out strategy, affinity purification and the yeast-two-hybrid assay, we demonstrated that the spliceosome-associated G-patch protein Gpl1 of the fission yeast S. pombe mediates interactions between putative RNA helicase Gih35 (SPAC20H4.09) and WD repeat protein Wdr83, and ensures their binding to the spliceosome. Furthermore, RT-qPCR analysis of the splicing efficiency of deletion mutants indicated that the absence of any of the components of the Gpl1-Gih35-Wdr83 complex leads to defective splicing of fet5 and pwi1, the reference genes whose unspliced isoforms harboring premature stop codons are targeted for degradation by the nonsense-mediated decay (NMD) pathway. Together, our results shed more light on the functional interactome of G-patch protein Gpl1 and revealed that the Gpl1-Gih35-Wdr83 complex plays an important role in the regulation of pre-mRNA splicing in S. pombe.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Precursores del ARN/genética , Empalme del ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076458

RESUMEN

Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteómica/métodos , Animales , Humanos , Espectrometría de Masas/métodos , Fosfoproteínas/química , Fosfoproteínas/genética , Mapeo de Interacción de Proteínas/métodos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteoma/química , Proteoma/genética , Proteoma/metabolismo
4.
Appl Microbiol Biotechnol ; 98(22): 9259-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24878753

RESUMEN

The present study is focused on preparation of proper Escherichia coli expression system to ensure high yields of various modified precursors of human recombinant thrombin, a potential biopharmaceutical reagent. Two thrombin precursors, the smallest single-chain α-thrombin precursor prethrombin-2 and its shortened form prethrombin-2∆13, and their His-tagged forms were used. In order to determine the effect of the different lengths and amino acid compositions of affinity His-tag on the target protein expression level, a variety of the His-tag sequences were used. We found out that the protein expression efficiency was closely related to the codons used for encoding of amino acids of fusion histidine tag. Optimization of culture medium composition is another way to increase yield of the target protein. Suitable medium composition can ensure cell growth to high densities which is related to total yield of expressed protein. In this study, a new optimized complex medium for batch fermentation was developed. Addition of nutrients like a yeast extract and enzymatic casein hydrolysate to the defined medium components had a positive impact on protein expression, where relatively high expression level of the target protein from total amount of cellular proteins was achieved. Further, we have focused on trace element solution composition, and the optimized nickel and selenium concentrations were determined. Our results show that the composition of essential trace metal solution has a major impact not only on expression level, but it can also affect cell growth rate.


Asunto(s)
Protrombina/genética , Protrombina/metabolismo , Medios de Cultivo/química , Escherichia coli/genética , Expresión Génica , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN
5.
STAR Protoc ; 3(1): 101137, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35128479

RESUMEN

Many cellular processes require the activities of complex molecular machines composed of several protein subunits. Insights into these systems can be gained by isolation of protein complexes followed by in vitro analyses determining the identity, posttranslational modifications, and interactions among proteins. Here, we present a protocol for tandem affinity purification (TAP) of protein complexes from the fission yeast Schizosaccharomyces pombe. The protocol employs cells expressing C-terminally TAP-tagged proteins and is suitable for the analysis of purified proteins by mass spectrometry. For complete information on the use and execution of this protocol, please refer to Cipakova et al. (2019).


Asunto(s)
Schizosaccharomyces , Espectrometría de Masas , Proteínas/metabolismo , Schizosaccharomyces/genética , Purificación por Afinidad en Tándem
6.
J Biotechnol ; 189: 136-42, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25234573

RESUMEN

Candida utilis represents a promising expression host, generating relatively high levels of recombinant proteins. The current study presents preliminary characterization of the upstream regulatory regions controlling the carbon source-dependent expression of the C. utilis maltase gene. Cellobiose and soluble starch were recognised as inducers of maltase promoter, besides maltose. We successfully applied the Cre-loxP system to acquire a null mutant strain with disrupted maltase gene and promoter in polyploid yeast C. utilis. Furthermore, the strength and minimal functional region of the promoter was evaluated by measuring ß-galactosidase activity. Our results suggest, the qPCR was shown itself a very smart method for relatively easy characterization of the transformants and correlation of the expression levels with gene dosage.


Asunto(s)
Candida/genética , Candida/enzimología , Regiones Promotoras Genéticas/genética , alfa-Glucosidasas/genética , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA