Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Proteomics ; 22(1): 100476, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470535

RESUMEN

Cancer-derived extracellular vesicles (EVs) promote tumorigenesis, premetastatic niche formation, and metastasis via their protein cargo. However, the proteins packaged by patient tumors into EVs cannot be determined in vivo because of the presence of EVs derived from other tissues. We therefore developed a cross-species proteomic method to quantify the human tumor-derived proteome of plasma EVs produced by patient-derived xenografts of four cancer types. Proteomic profiling revealed individualized packaging of novel protein cargo, and machine learning accurately classified the type of the underlying tumor.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Proteómica , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Comunicación Celular , Proteoma/metabolismo
2.
Liver Int ; 40(6): 1395-1407, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32181561

RESUMEN

BACKGROUND & AIMS: Gut microbiota are affected by diet and ethnicity, which impacts cognition and hospitalizations in cirrhosis. AIM: Study interactions of diet with microbiota and impact on hospitalizations and cognition in American and Mexican cohorts. METHODS: Controls and age-balanced patients with compensated/decompensated cirrhosis were included and followed for 90-day hospitalizations. A subset underwent minimal hepatic encephalopathy (MHE) testing. Parameters such as dietary, salivary and faecal microbiota (diversity, taxa analysis, cirrhosis dysbiosis ratio CDR:high = good) between/within countries were analysed. Regression analyses for hospitalizations and MHE were performed. RESULTS: In all, 275 age-balanced subjects (133 US [40 Control, 50 Compensated, 43 Decompensated] and 142 Mexican [41 Control, 49 Compensated, 52 Decompensated]) were enrolled. MELD/cirrhosis severity was comparable. Diet showed lower protein and animal fat intake in all decompensated patients, but this was worse in Mexico. Diversity was lower in stool and saliva in decompensated patients, and worse in Mexican cohorts. Prevotellaceae were lower in decompensated cirrhosis, particularly those with lower animal fat/protein consumption across countries. Hospitalizations were higher in Mexico vs the USA (26% vs 14%, P = .04). On regression, Prevotellaceae, Ruminococcaceae and Lachnospiraceae lowered hospitalization risk independent of MELD and ascites. MHE testing was performed in 120 (60/country and 20/subgroup) subjects and MHE rate was similar. MELD and decompensation increased while CDR and Prevotellaceae decreased the risk of MHE. CONCLUSIONS: Changes in diet and microbiota, especially related to animal fat and protein intake and Prevotellaceae, are associated with MHE and hospitalizations in Mexican patients with cirrhosis compared to an American cohort. Nutritional counselling to increase protein intake in cirrhosis could help prevent these hospitalizations.


Asunto(s)
Encefalopatía Hepática , Microbiota , Cognición , Encefalopatía Hepática/epidemiología , Encefalopatía Hepática/etiología , Hospitalización , Humanos , Cirrosis Hepática/complicaciones , México/epidemiología
3.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456508

RESUMEN

IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.


Asunto(s)
Interleucina-33 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Interleucina-33/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
4.
Cell Metab ; 34(10): 1499-1513.e8, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36070756

RESUMEN

Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.


Asunto(s)
Tejido Adiposo Blanco , Antioxidantes , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Antioxidantes/metabolismo , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Macrófagos/metabolismo , Ratones , Mitocondrias/metabolismo , Obesidad/metabolismo , Almidón/metabolismo
5.
JCI Insight ; 6(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33507882

RESUMEN

IL-33 is a key mediator of chronic airway disease driven by type 2 immune pathways, yet the nonclassical secretory mechanism for this cytokine remains undefined. We performed a comprehensive analysis in human airway epithelial cells, which revealed that tonic IL-33 secretion is dependent on the ceramide biosynthetic enzyme neutral sphingomyelinase 2 (nSMase2). IL-33 is cosecreted with exosomes by the nSMase2-regulated multivesicular endosome (MVE) pathway as surface-bound cargo. In support of these findings, human chronic obstructive pulmonary disease (COPD) specimens exhibited increased epithelial expression of the abundantly secreted IL33Δ34 isoform and augmented nSMase2 expression compared with non-COPD specimens. Using an Alternaria-induced airway disease model, we found that the nSMase2 inhibitor GW4869 abrogated both IL-33 and exosome secretion as well as downstream inflammatory pathways. This work elucidates a potentially novel aspect of IL-33 biology that may be targeted for therapeutic benefit in chronic airway diseases driven by type 2 inflammation.


Asunto(s)
Exosomas/metabolismo , Interleucina-33/inmunología , Interleucina-33/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Compuestos de Anilina , Animales , Compuestos de Bencilideno , Ceramidas/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Inmunidad Celular , Inflamación/metabolismo , Interleucina-33/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Sistema Respiratorio
6.
J Control Release ; 262: 91-103, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28736263

RESUMEN

Flash nanoprecipitation (FNP) has proven to be a powerful tool for the rapid and scalable assembly of solid-core nanoparticles from block copolymers. The process can be performed using a simple confined impingement jets mixer and provides an efficient and reproducible method of loading micelles with hydrophobic drugs. To date, FNP has not been applied for the fabrication of complex or vesicular nanoarchitectures capable of encapsulating hydrophilic molecules or bioactive protein therapeutics. Here, we present FNP as a single customizable method for the assembly of bicontinuous nanospheres, filomicelles and vesicular, multilamellar and tubular polymersomes from poly(ethylene glycol)-bl-poly(propylene sulfide) block copolymers. Multiple impingements of polymersomes assembled via FNP were shown to decrease vesicle diameter and polydispersity, allowing gram-scale fabrication of monodisperse polymersomes within minutes. Furthermore, we demonstrate that FNP supports the simultaneous loading of both hydrophobic and hydrophilic molecules respectively into the polymersome membrane and aqueous lumen, and encapsulated enzymes were found to be released and remain active following vesicle lysis. As an example application, theranostic polymersomes were generated via FNP that were dual loaded with the immunosuppressant rapamycin and a fluorescent dye to link targeted immune cells with the elicited immunomodulation of T cells. By expanding the capabilities of FNP, we present a rapid, scalable and reproducible method of nanofabrication for a wide range of nanoarchitectures that are typically challenging to assemble and load with therapeutics for controlled delivery and theranostic strategies.


Asunto(s)
Inmunosupresores/administración & dosificación , Nanopartículas/administración & dosificación , Polietilenglicoles/administración & dosificación , Sirolimus/administración & dosificación , Sulfuros/administración & dosificación , Animales , Precipitación Química , Sistemas de Liberación de Medicamentos , Inmunosupresores/química , Masculino , Ratones Endogámicos C57BL , Nanopartículas/química , Polietilenglicoles/química , Sirolimus/química , Sulfuros/química , Linfocitos T/efectos de los fármacos , Nanomedicina Teranóstica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA