RESUMEN
Rationale: Despite evidence demonstrating a prognostic role for computed tomography (CT) scans in idiopathic pulmonary fibrosis (IPF), image-based biomarkers are not routinely used in clinical practice or trials. Objectives: To develop automated imaging biomarkers using deep learning-based segmentation of CT scans. Methods: We developed segmentation processes for four anatomical biomarkers, which were applied to a unique cohort of treatment-naive patients with IPF enrolled in the PROFILE (Prospective Observation of Fibrosis in the Lung Clinical Endpoints) study and tested against a further United Kingdom cohort. The relationships among CT biomarkers, lung function, disease progression, and mortality were assessed. Measurements and Main Results: Data from 446 PROFILE patients were analyzed. Median follow-up duration was 39.1 months (interquartile range, 18.1-66.4 mo), with a cumulative incidence of death of 277 (62.1%) over 5 years. Segmentation was successful on 97.8% of all scans, across multiple imaging vendors, at slice thicknesses of 0.5-5 mm. Of four segmentations, lung volume showed the strongest correlation with FVC (r = 0.82; P < 0.001). Lung, vascular, and fibrosis volumes were consistently associated across cohorts with differential 5-year survival, which persisted after adjustment for baseline gender, age, and physiology score. Lower lung volume (hazard ratio [HR], 0.98 [95% confidence interval (CI), 0.96-0.99]; P = 0.001), increased vascular volume (HR, 1.30 [95% CI, 1.12-1.51]; P = 0.001), and increased fibrosis volume (HR, 1.17 [95% CI, 1.12-1.22]; P < 0.001) were associated with reduced 2-year progression-free survival in the pooled PROFILE cohort. Longitudinally, decreasing lung volume (HR, 3.41 [95% CI, 1.36-8.54]; P = 0.009) and increasing fibrosis volume (HR, 2.23 [95% CI, 1.22-4.08]; P = 0.009) were associated with differential survival. Conclusions: Automated models can rapidly segment IPF CT scans, providing prognostic near and long-term information, which could be used in routine clinical practice or as key trial endpoints.
Asunto(s)
Aprendizaje Profundo , Progresión de la Enfermedad , Fibrosis Pulmonar Idiopática , Tomografía Computarizada por Rayos X , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/mortalidad , Masculino , Femenino , Tomografía Computarizada por Rayos X/métodos , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Pronóstico , Reino Unido , Pulmón/diagnóstico por imagen , Pulmón/patología , Valor Predictivo de las Pruebas , Estudios de CohortesRESUMEN
Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).
Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Espirometría , Tomografía Computarizada por Rayos X , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Progresión de la Enfermedad , Volumen Espiratorio Forzado/fisiología , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Fumadores/estadística & datos numéricos , Fumar/efectos adversos , Fumar/fisiopatología , Estudios de Casos y ControlesRESUMEN
Rationale: Viral infections are major drivers of exacerbations and clinical burden in patients with asthma and chronic obstructive pulmonary disease (COPD). IFN-ß is a key component of the innate immune response to viral infection. To date, studies of inhaled IFN-ß treatment have not demonstrated a significant effect on asthma exacerbations.Objectives: The dynamics of exogenous IFN-ß activity were investigated to inform on future clinical indications for this potential antiviral therapy.Methods: Monocyte-derived macrophages (MDMs), alveolar macrophages, and primary bronchial epithelial cells (PBECs) were isolated from healthy control subjects and patients with COPD and infected with influenza virus either prior to or after IFN-ß stimulation. Infection levels were measured by the percentage of nucleoprotein 1-positive cells using flow cytometry. Viral RNA shedding and IFN-stimulated gene expression were measured by quantitative PCR. Production of inflammatory cytokines was measured using MSD.Measurements and Main Results: Adding IFN-ß to MDMs, alveolar macrophages, and PBECs prior to, but not after, infection reduced the percentage of nucleoprotein 1-positive cells by 85, 56, and 66%, respectively (P < 0.05). Inhibition of infection lasted for 24 hours after removal of IFN-ß and was maintained albeit reduced up to 1 week in MDMs and 72 hours in PBECs; this was similar between healthy control subjects and patients with COPD. IFN-ß did not induce inflammatory cytokine production by MDMs or PBECs but reduced influenza-induced IL-1ß production by PBECs.Conclusions:In vitro modeling of IFN-ß dynamics highlights the potential for intermittent prophylactic doses of exogenous IFN-ß to modulate viral infection. This provides important insights to aid the future design of clinical trials of IFN-ß in asthma and COPD.
Asunto(s)
Antivirales/uso terapéutico , Asma/tratamiento farmacológico , Interferón beta/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Virosis/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Asma/inmunología , Asma/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/virología , Virosis/inmunologíaAsunto(s)
Biomarcadores , Progresión de la Enfermedad , Fibrosis Pulmonar Idiopática , Tomografía Computarizada por Rayos X , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Biomarcadores/sangre , Anciano , Persona de Mediana Edad , Pulmón/diagnóstico por imagen , Pulmón/patologíaRESUMEN
BACKGROUND: Alterations in the composition of the lung microbiome associated with adverse clinical outcomes, known as dysbiosis, have been implicated with disease severity and exacerbations in COPD. OBJECTIVE: To characterise longitudinal changes in the lung microbiome in the AERIS study (Acute Exacerbation and Respiratory InfectionS in COPD) and their relationship with associated COPD outcomes. METHODS: We surveyed 584 sputum samples from 101 patients with COPD to analyse the lung microbiome at both stable and exacerbation time points over 1 year using high-throughput sequencing of the 16S ribosomal RNA gene. We incorporated additional lung microbiology, blood markers and in-depth clinical assessments to classify COPD phenotypes. RESULTS: The stability of the lung microbiome over time was more likely to be decreased in exacerbations and within individuals with higher exacerbation frequencies. Analysis of exacerbation phenotypes using a Markov chain model revealed that bacterial and eosinophilic exacerbations were more likely to be repeated in subsequent exacerbations within a subject, whereas viral exacerbations were not more likely to be repeated. We also confirmed the association of bacterial genera, including Haemophilus and Moraxella, with disease severity, exacerbation events and bronchiectasis. CONCLUSIONS: Subtypes of COPD have distinct bacterial compositions and stabilities over time. Some exacerbation subtypes have non-random probabilities of repeating those subtypes in the future. This study provides insights pertaining to the identification of bacterial targets in the lung and biomarkers to classify COPD subtypes and to determine appropriate treatments for the patient. TRIAL REGISTRATION NUMBER: Results, NCT01360398.
Asunto(s)
Progresión de la Enfermedad , Pulmón/microbiología , Microbiota , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Eosinofilia Pulmonar/complicaciones , Anciano , Femenino , Haemophilus/aislamiento & purificación , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Moraxella/aislamiento & purificación , Estudios Observacionales como Asunto , Fenotipo , Prevotella/aislamiento & purificación , Enfermedad Pulmonar Obstructiva Crónica/virología , Eosinofilia Pulmonar/patología , ARN Ribosómico 16S/análisis , Recurrencia , Índice de Severidad de la Enfermedad , Esputo/citología , Esputo/microbiología , Streptococcus/aislamiento & purificación , Veillonella/aislamiento & purificaciónRESUMEN
BACKGROUND: COPD patients have increased risk of developing pneumonia, which is associated with poor outcomes. It can be symptomatically indistinguishable from exacerbations, making diagnosis challenging. Studies of pneumonia in COPD have focused on hospitalised patients and are not representative of the ambulant COPD population. Therefore, we sought to determine the incidence and aetiology of acute exacerbation events with evidence of pneumonic radiographic infiltrates in an outpatient COPD cohort. METHODS: One hundred twenty-seven patients with moderate to very severe COPD aged 42-85 years underwent blood and sputum sampling over one year, at monthly stable visits and within 72 h of exacerbation symptom onset. 343 exacerbations with chest radiographs were included. RESULTS: 20.1% of exacerbations had pneumonic infiltrates. Presence of infiltrate was highly seasonal (Winter vs summer OR 3.056, p = 0.027). In paired analyses these exacerbation events had greater increases in systemic inflammation. Bacterial detection rate was higher in the pneumonic group, with Haemophilus influenzae the most common bacteria in both radiological groups. Viral detection and sputum microbiota did not differ with chest radiograph appearance. CONCLUSIONS: In an outpatient COPD cohort, pneumonic infiltrates at exacerbation were common, and associated with more intense inflammation. Bacterial pathogen detection and lung microbiota were not distinct, suggesting that exacerbations and pneumonia in COPD share common infectious triggers and represent a continuum of severity rather than distinct aetiological events. TRIAL REGISTRATION: Trial registration Number: NCT01360398 .
Asunto(s)
Progresión de la Enfermedad , Neumonía/diagnóstico por imagen , Neumonía/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neumonía/fisiopatología , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatologíaRESUMEN
BACKGROUND: COPD is a complex, heterogeneous disease characterised by progressive development of airflow limitation. Spirometry provides little information about key aspects of pathology and is poorly related to clinical outcome, so other tools are required to investigate the disease. We sought to explore the relationships between quantitative CT analysis with functional, inflammatory and infective assessments of disease to identify the utility of imaging to stratify disease to better predict outcomes and disease response. METHODS: Patients from the AERIS study with moderate-very severe COPD underwent HRCT, with image analysis determining the quantity of emphysema (%LAA<- 950), small airways disease (E/I MLD) and bronchial wall thickening (Pi10). At enrolment subjects underwent lung function testing, six-minute walk testing (6MWT), blood sampling for inflammatory markers and sputum sampling for white cell differential and microbiological culture and PCR. RESULTS: 122 subjects were included in this analysis. Emphysema and small airways disease had independent associations with airflow obstruction (ß = - 0.34, p < 0.001 and ß = - 0.56, p < 0.001). %LAA<- 950 had independent associations with gas transfer (ß = - 0.37, p < 0.001) and E/I MLD with RV/TLC (ß = 0.30, p =0.003). The distance walked during the 6MWT was not associated with CT parameters, but exertional desaturation was independently associated with emphysema (ß = 0.73, p < 0.001). Pi10 did not show any independent associations with lung function or functional parameters. No CT parameters had any associations with sputum inflammatory cells. Greater emphysema was associated with lower levels of systemic inflammation (CRP ß = - 0.34, p < 0.001 and fibrinogen ß = - 0.28, p =0.003). There was no significant difference in any of the CT parameters between subjects where potentially pathogenic bacteria were detected in sputum and those where it was not. CONCLUSIONS: This study provides further validation for the use of quantitative CT measures of emphysema and small airways disease in COPD as they showed strong associations with pulmonary physiology and functional status. In contrast to this quantitative CT measures showed few convincing associations with biological measures of disease, suggesting it is not an effective tool at measuring disease activity.
Asunto(s)
Bronquios/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Infecciones del Sistema Respiratorio/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Bronquios/fisiopatología , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Inflamación/diagnóstico por imagen , Inflamación/fisiopatología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/fisiopatología , Infecciones del Sistema Respiratorio/fisiopatología , Tomografía Computarizada por Rayos X/métodosRESUMEN
BACKGROUND: The aetiology of acute exacerbations of COPD (AECOPD) is incompletely understood. Understanding the relationship between chronic bacterial airway infection and viral exposure may explain the incidence and seasonality of these events. METHODS: In this prospective, observational cohort study (NCT01360398), patients with COPD aged 40-85â years underwent sputum sampling monthly and at exacerbation for detection of bacteria and viruses. Results are presented for subjects in the full cohort, followed for 1â year. Interactions between exacerbation occurrence and pathogens were investigated by generalised estimating equation and stratified conditional logistic regression analyses. FINDINGS: The mean exacerbation rate per patient-year was 3.04 (95% CI 2.63 to 3.50). At AECOPD, the most common bacterial species were non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis, and the most common virus was rhinovirus. Logistic regression analyses (culture bacterial detection) showed significant OR for AECOPD occurrence when M. catarrhalis was detected regardless of season (5.09 (95% CI 2.76 to 9.41)). When NTHi was detected, the increased risk of exacerbation was greater in high season (October-March, OR 3.04 (1.80 to 5.13)) than low season (OR 1.22 (0.68 to 2.22)). Bacterial and viral coinfection was more frequent at exacerbation (24.9%) than stable state (8.6%). A significant interaction was detected between NTHi and rhinovirus presence and AECOPD risk (OR 5.18 (1.92 to 13.99); p=0.031). CONCLUSIONS: AECOPD aetiology varies with season. Rises in incidence in winter may be driven by increased pathogen presence as well as an interaction between NTHi airway infection and effects of viral infection. TRIAL REGISTRATION NUMBER: Results, NCT01360398.
Asunto(s)
Microbiología del Aire , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Estaciones del Año , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Haemophilus influenzae/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Moraxella catarrhalis/aislamiento & purificación , Estudios Prospectivos , Rhinovirus/aislamiento & purificación , Esputo/microbiologíaRESUMEN
Eosinophilic inflammation in chronic obstructive pulmonary disease (COPD) predicts response to treatment, especially corticosteroids. We studied the nature of eosinophilic inflammation in COPD prospectively to examine the stability of this phenotype and its dynamics across exacerbations, and its associations with clinical phenotype, exacerbations and infection.127 patients aged 40-85â years with moderate to very severe COPD underwent repeated blood and sputum sampling at stable visits and within 72â h of exacerbation for 1â year.Blood eosinophils ≥2% was prevalent at baseline, and predicted both predominantly raised stable-state eosinophils across the year (area under the curve 0.841, 95% CI 0.755-0.928) and increased risk of eosinophilic inflammation at exacerbation (OR 9.16; p<0.001). Eosinophils ≥2% at exacerbation and eosinophil predominance at stable visits were associated with a lower risk of bacterial presence at exacerbation (OR 0.49; p=0.049 and OR 0.25; p=0.065, respectively). Bacterial infection at exacerbation was highly seasonal (winter versus summer OR 4.74; p=0.011) in predominantly eosinophilic patients.Eosinophilic inflammation is a common and stable phenotype in COPD. Blood eosinophil counts in the stable state can predict the nature of inflammation at future exacerbations, which when combined with an understanding of seasonal variation provides the basis for the development of new treatment paradigms for this important condition.
Asunto(s)
Recuento de Células Sanguíneas/métodos , Glucocorticoides , Enfermedad Pulmonar Obstructiva Crónica , Eosinofilia Pulmonar , Infecciones del Sistema Respiratorio , Anciano , Femenino , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Humanos , Inflamación/inmunología , Inflamación/patología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Eosinofilia Pulmonar/complicaciones , Eosinofilia Pulmonar/diagnóstico , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/etiología , Índice de Severidad de la Enfermedad , Esputo/diagnóstico por imagen , Esputo/microbiología , Brote de los SíntomasRESUMEN
BACKGROUND: Matrix metalloproteinases (MMPs) are proteolytic enzymes that can degrade the extracellular matrix and drive tissue remodelling, key processes in the pathogenesis of COPD. The development of small airway disease has been identified as a critical mechanism in the early development of airflow obstruction but the contribution of MMPs in human disease is poorly characterised. OBJECTIVES: We investigated the role of MMPs and inflammatory cytokines in the lung by quantifying levels and determining relationships with the key pathological components of COPD in patients and healthy controls. METHODS: We analysed levels of MMPs and inflammatory cytokines in bronchoalveolar lavage from 24 COPD and 8 control subjects. Each subject underwent spirometry and high-resolution CT. Image analysis quantitatively assessed emphysema, bronchial wall thickening and small airways disease. RESULTS: Multiple MMPs (MMP-1, -2, -3, -8, -9 and -10) and cytokines (interleukin (IL) 6 and IL-8) were elevated in lungs of subjects with COPD. MMP-3, -7, -8, -9, -10 and -12 concentrations closely associated with CT markers of small airways disease. Emphysema severity was also associated with MMP-3, -7 and -10. However, there were no strong relationships between MMPs and bronchial wall thickness of the larger airways. CONCLUSIONS: Pulmonary MMP concentrations are directly associated with the extent of gas trapping and small airways disease identified on CT scan. This study suggests that MMPs play a significant role in small airways remodelling, a key feature in the pathogenesis of COPD. TRIAL REGISTRATION NUMBER: NCT01701869.
Asunto(s)
Biomarcadores/metabolismo , Bronquios/metabolismo , Líquido del Lavado Bronquioalveolar/química , Metaloproteinasas de la Matriz/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Tomografía Computarizada por Rayos X , Anciano , Bronquios/patología , Broncoscopía , Citocinas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/etiología , EspirometríaRESUMEN
Computed tomography (CT) is the modality of choice for imaging the thorax and lung structure. In chronic obstructive pulmonary disease (COPD), it used to recognise the key morphological features of emphysema, bronchial wall thickening and gas trapping. Despite this, its place in the investigation and management of COPD is yet to be determined, and it is not routinely recommended. However, lung CT already has important clinical applications where it can be used to diagnose concomitant pathology and determine which patients with severe emphysema are appropriate for lung volume reduction procedures. Furthermore, novel quantitative analysis techniques permit objective measurements of pulmonary and extrapulmonary manifestations of the disease. These techniques can give important insights into COPD, and help explore the heterogeneity and underlying mechanisms of the condition. In time, it is hoped that these techniques can be used in clinical trials to help develop disease-specific therapy and, ultimately, as a clinical tool in identifying patients who would benefit most from new and existing treatments. This review discusses the current clinical applications for CT imaging in COPD and quantification techniques, and its potential future role in stratifying disease for optimal outcome.
Asunto(s)
Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/diagnóstico por imagen , Humanos , Neumonectomía , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/terapia , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Emphysema is characterised by distinct pathological sub-types, but little is known about the divergent underlying aetiology. Matrix-metalloproteinases (MMPs) are proteolytic enzymes that can degrade the extracellular matrix and have been identified as potentially important in the development of emphysema. However, the relationship between MMPs and emphysema sub-type is unknown. We investigated the role of MMPs and their inhibitors in the development of emphysema sub-types by quantifying levels and determining relationships with these sub-types in mild-moderate COPD patients and ex/current smokers with preserved lung function. METHODS: Twenty-four mild-moderate COPD and 8 ex/current smokers with preserved lung function underwent high resolution CT and distinct emphysema sub-types were quantified using novel local histogram-based assessment of lung density. We analysed levels of MMPs and tissue inhibitors of MMPs (TIMPs) in bronchoalveolar lavage (BAL) and assessed their relationship with these emphysema sub-types. RESULTS: The most prevalent emphysema subtypes in COPD subjects were mild and moderate centrilobular (CLE) emphysema, while only small amounts of severe centrilobular emphysema, paraseptal emphysema (PSE) and panlobular emphysema (PLE) were present. MMP-3, and -10 associated with all emphysema sub-types other than mild CLE, while MMP-7 and -8 had associations with moderate and severe CLE and PSE. MMP-9 also had associations with moderate CLE and paraseptal emphysema. Mild CLE occurred in substantial quantities irrespective of whether airflow obstruction was present and did not show any associations with MMPs. CONCLUSION: Multiple MMPs are directly associated with emphysema sub-types identified by CT imaging, apart from mild CLE. This suggests that MMPs play a significant role in the tissue destruction seen in the more severe sub-types of emphysema, whereas early emphysematous change may be driven by a different mechanism. TRIAL REGISTRATION: Trial registration number NCT01701869 .
Asunto(s)
Pulmón/enzimología , Metaloproteinasas de la Matriz/metabolismo , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/enzimología , Anciano , Obstrucción de las Vías Aéreas/diagnóstico por imagen , Obstrucción de las Vías Aéreas/etiología , Líquido del Lavado Bronquioalveolar/química , Broncoscopía , Femenino , Humanos , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Pruebas de Función Respiratoria , Fumar/efectos adversos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Tomografía Computarizada por Rayos XRESUMEN
INTRODUCTION: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) play a pivotal role in the burden and progressive course of chronic obstructive pulmonary disease (COPD). As such, disease management is predominantly based on the prevention of these episodes of acute worsening of respiratory symptoms. However, to date, personalised prediction and early and accurate diagnosis of AECOPD remain unsuccessful. Therefore, the current study was designed to explore which frequently measured biomarkers can predict an AECOPD and/or respiratory infection in patients with COPD. Moreover, the study aims to increase our understanding of the heterogeneity of AECOPD as well as the role of microbial composition and hostmicrobiome interactions to elucidate new disease biology in COPD. METHODS AND ANALYSIS: The 'Early diagnostic BioMARKers in Exacerbations of COPD' study is an exploratory, prospective, longitudinal, single-centre, observational study with 8-week follow-up enrolling up to 150 patients with COPD admitted to inpatient pulmonary rehabilitation at Ciro (Horn, the Netherlands). Respiratory symptoms, vitals, spirometry and nasopharyngeal, venous blood, spontaneous sputum and stool samples will be frequently collected for exploratory biomarker analysis, longitudinal characterisation of AECOPD (ie, clinical, functional and microbial) and to identify host-microbiome interactions. Genomic sequencing will be performed to identify mutations associated with increased risk of AECOPD and microbial infections. Predictors of time-to-first AECOPD will be modelled using Cox proportional hazards' regression. Multiomic analyses will provide a novel integration tool to generate predictive models and testable hypotheses about disease causation and predictors of disease progression. ETHICS AND DISSEMINATION: This protocol was approved by the Medical Research Ethics Committees United (MEC-U), Nieuwegein, the Netherlands (NL71364.100.19). TRIAL REGISTRATION NUMBER: NCT05315674.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Prospectivos , Manejo de la Enfermedad , Progresión de la Enfermedad , Hospitalización , Estudios Observacionales como AsuntoRESUMEN
Rationale: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms. Methods: Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed. Results: Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B, SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) -2.0, -2.2, -1.5, -0.5, -0.7 and -0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44 inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory mean lung density) (r= -0.56, r= -0.58, r= -0.45, r= -0.36, r= -0.44, r= -0.37, r= -0.40 and r= -0.39 (adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r= -0.55, r= -0.61, r= -0.48, r= -0.51, r= -0.41, r= -0.31 and r= -0.34, respectively (adjusted p<0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85). Conclusions: Using a multiomics approach, we demonstrate, for the first time, global surfactant dysregulation in COPD that was associated with emphysema, giving new insights into potential mechanisms underlying the cause or consequence of disease.
RESUMEN
BACKGROUND: COPD and coronary heart disease (CHD) frequently co-occur, yet which COPD phenotypes are most prone to CHD is poorly understood. The aim of this study was to see whether COPD patients did have a true higher risk for CHD than subjects without COPD, and to examine a range of potential factors associated with CHD in COPD patients and controls. METHODS: 347 COPD patients and 428 non-COPD controls, were invited for coronary computed tomography angiography (CCTA) and pulmonary CT. Arterial blood gas, bioelectrical impedance and lung function was measured, and a detailed medical history taken. The CCTA was evaluated for significant coronary stenosis and calcium score (CaSc), and emphysema defined as >10% of total area <-950 Hounsfield units. RESULTS: 12.6% of the COPD patients and 5.7% of the controls had coronary stenosis (p<0.01), whereas 55.9% of the COPD patients had a CaSc>100 compared to 31.6% of the controls (p<0.01). In a multivariable model adjusting for sex, age, body composition, pack-years, CRP, cholesterol/blood pressure lowering medication use and diabetes mellitus, the OR (95% CI) for having significant stenosis was 1.80 (0.86-3.78) in COPD patients compared with controls. In a similar model, the OR (95% CI) for having CaSc>100 was 1.68 (1.12-2.53) in COPD patients compared with controls. Examining the risk of significant stenosis and CaSc>100 among COPD patients, no variable was associated with significant stenosis, whereas male sex [OR 2.85 (1.56-5.21)], age [OR 3.74 (2.42-5.77)], statin use [OR 2.23 (1.23-4.50)] were associated with CaSc>100, after adjusting for body composition, pack-years, C-reactive protein, use of angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), diabetes, emphysema score, GOLD category, exacerbation frequency, eosinophilia, and hypoxemia. CONCLUSION: COPD patients were more likely to have CHD, but neither emphysema score, lung function, exacerbation frequency, nor hypoxemia predicted presence of either coronary stenosis or CaSc>100.
Asunto(s)
Asma , Estenosis Coronaria , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Asma/complicaciones , Constricción Patológica/complicaciones , Estenosis Coronaria/complicaciones , Enfisema/complicaciones , Humanos , Hipoxia/complicaciones , Masculino , Enfermedad Pulmonar Obstructiva Crónica/complicacionesRESUMEN
BACKGROUND: Small airways disease (SAD) is a key component of COPD and is a main contributing factor to lung function decline. RESEARCH QUESTION: Is SAD a key feature of frequent COPD exacerbators and is this related to airway inflammation? STUDY DESIGN AND METHODS: Thirty-nine COPD patients defined as either frequent exacerbator (FE) group (≥ 2 exacerbations/y; n = 17) and infrequent exacerbator (IFE) group (≤ 1 exacerbation/y; n = 22) underwent the forced oscillation technique (resistance at 5 Hz minus 19 Hz [R5-R19], area of reactance [AX]), multiple breath nitrogen washout (conducting airways ventilation heterogeneity, acinar ventilation heterogeneity [Sacin]), plethysmography (ratio of residual volume to total lung capacity), single-breath transfer factor of the lung for carbon monoxide, spirometry (FEV1, FEV1/FVC), and paired inspiratory-expiratory CT scans to ascertain SAD. A subpopulation underwent bronchoscopy to enable enumeration of BAL cell proportions. RESULTS: Sacin was significantly higher in the COPD FE group compared with the IFE group (P = .027). In the FE group, markers of SAD were associated strongly with BAL neutrophil proportions, R5-R19 (P = .001, r = 0.795), AX (P = .049, ρ = 0.560), residual volume to total lung capacity ratio (P = .004, r = 0.730), and the mean lung density of the paired CT scans (P = .018, r = 0.639). INTERPRETATION: Increased Sacin may be a consequence of previous exacerbations or may highlight a group of patients prone to exacerbations. Measures of SAD were associated strongly with neutrophilic inflammation in the small airways of FE patients, supporting the hypothesis that frequent exacerbations are associated with SAD related to increased cellular inflammation.
Asunto(s)
Obstrucción de las Vías Aéreas/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Anciano , Obstrucción de las Vías Aéreas/diagnóstico por imagen , Líquido del Lavado Bronquioalveolar/citología , Broncoscopía , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Inflamación/fisiopatología , Masculino , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pruebas de Función Respiratoria , Brote de los Síntomas , Tomografía Computarizada por Rayos XRESUMEN
Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, caused by emphysema and small airways disease (SAD). Computed tomography (CT) coupled with image analysis enables the quantification of these abnormalities; however, the optimum method for doing so has not been determined.Objectives: This study aims to compare two CT quantitative analysis techniques, disease probability measure (DPM) and parametric response mapping (PRM), and assess their relationship with specific physiological measures of SAD.Methods: Subjects with mild to moderate COPD, never smokers, and healthy ex-smokers were recruited. Each had airway oscillometry and multiple-breath nitrogen washout, measuring peripheral airway resistance, peripheral airway reactance, and acinar airway inhomogeneity. Subjects also had an inspiratory and expiratory chest CT, with DPM and PRM analysis performed by coregistering images and classifying each voxel as normal, emphysema, or nonemphysematous gas trapping related to SAD.Results: Thirty-eight subjects with COPD, 18 never smokers, and 23 healthy ex-smokers were recruited. There were strong associations between DPM and PRM analysis when measuring gas trapping (ρ = 0.87; P < 0.001) and emphysema (ρ = 0.99; P < 0.001). DPM assigned significantly more voxels as emphysema and gas trapped than PRM (P < 0.001). Both techniques showed significantly greater emphysema and gas trapping in subjects with COPD than in never smokers and ex-smokers (P < 0.001). All CT measures had significant associations with peripheral airway resistance and reactance, with disease probability measure of nonemphysematous gas trapping related to SAD having the strongest independent association with peripheral airway resistance (ß = 0.42; P = 0.001) and peripheral airway reactance (ß = 0.41; P = 0.001). Emphysema measures had the strongest associations with acinar airway inhomogeneity (ß = 0.35-0.38).Conclusions: These results provide further validation for the use of DPM/PRM analysis in COPD by demonstrating significant relationships with specific physiological measures of SAD.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Respiración , Pruebas de Función Respiratoria , Fumar/efectos adversosRESUMEN
The association between exacerbation aetiology and exacerbation frequency is poorly understood. We analysed 2-year follow-up data from a prospective observational study of patients with chronic obstructive pulmonary disease (COPD) (www.clinicaltrials.gov identifier number NCT01360398) to evaluate year-to-year variation in exacerbation frequency and related aetiology. A total of 127 patients underwent blood and sputum sampling monthly and at exacerbation to detect respiratory infections and eosinophilic inflammation; 103 continued into year 2 and 88 completed both years. The most common bacterial species at stable state and exacerbation was Haemophilus influenzae. Among infrequent exacerbators (one exacerbation per year), the incidence of viral infection at exacerbation was high (60.0% (95% CI 35.1-81.7%) in year 1 and 78.6% (53.4-94.2%) in year 2). Those with more frequent exacerbations tended to have higher relative incidence of bacterial than viral infection. Patients with at least two additional exacerbations in year 2 versus year 1 had a higher risk of H. influenzae colonisation at stable state than those with at least two fewer exacerbations, as detected by culture (OR 1.43 (95% CI 0.71-2.91) versus 0.63 (0.40-1.01), p=0.06) and PCR (1.76 (95% CI 0.88-3.51) versus 0.56 (0.37-0.86), p<0.01). This was not seen with other infection types or eosinophilic inflammation. Analysis of the same cohort over 2 years showed, for the first time, that changes in yearly COPD exacerbation rate may be associated with variations in H. influenzae colonisation.
RESUMEN
BACKGROUND: Small airways disease (SAD) is considered pivotal in the pathology of COPD. There are numerous publications describing physiological and Computed Tomography (CT) imaging markers to detect SAD. However, there is no agreed gold standard and limited understanding of the clinical associations of these measures to disease outcomes. METHODS: We conducted a systematic review using Embase, Medline and Pubmed to explore the relationship between physiological and CT SAD measures in COPD (GOLD Stages 1-4). Furthermore, evidence linking these physiological measures with defined clinical outcomes such as health status, functional assessment and exacerbation frequency were summarised. RESULTS: The search yielded 1160 abstracts of which 19 met the search criteria. Six studies examined physiological and CT measures while 13 publications identified physiological measures and clinical outcomes. Strong correlations were seen between CT and physiological measures of SAD. Varying associations between physiological measures and defined clinical outcomes were noted. CONCLUSIONS: Physiological and CT measures of SAD correlate and infer similar information. Physiological measures of SAD may offer valuable insight into clinical expression of the disease. A consensus on the standardisation and recommendation of tests to measure SAD is needed in order to better understand any clinical benefits of targeted drug therapy to the small airways.
Asunto(s)
Bronquiolos/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Bronquiolos/diagnóstico por imagen , Humanos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Índice de Severidad de la EnfermedadRESUMEN
Influenza A virus (IAV) is a major global public health burden due to its routine evasion of immunization strategies. Natural killer (NK) cells are innate cytotoxic cells with important antiviral activity in the human body, yet the function of these cells in the control of IAV infection is unclear. The aim of this study was to determine the role of lung NK cell cytotoxic responses to IAV. Human lung explants were infected ex vivo with IAV, and lung NK cell activation was analyzed by flow cytometry. Cytotoxic responses of NK cell subsets against IAV-infected macrophages were measured by flow cytometry and ELISA. Despite reports of hypofunctionality in the pulmonary environment, human lung-associated NK cells responded rapidly to ex vivo IAV infection, with upregulation of surface CD107a 24 h post-infection. The lung NK cell phenotype is similar in maturity and differentiation to NK cells of the peripheral blood but a unique CD56brightCD49a+CD103+CD69+ NK cell population was identified in the lung, indicating NK cell residency within this organ. In response to ex vivo IAV infection a greater proportion of resident CD56brightCD49a+ NK cells expressed surface CD107a compared with CD56brightCD49a- NK cells, suggesting a hyperfunctional NK cell population may be present within human lung tissue and could be the result of innate immunological training. Furthermore, NK cells provided significant antiviral, cytotoxic activity following contact with influenza-infected cells, including the production and release of IFN-γ and granzyme-B resulting in macrophage cell death. These results suggest that a resident, trained NK cell population are present in the human lung and may provide early and important control of viral infection. A greater understanding of this resident mucosal population may provide further insight into the role of these cells in controlling viral infection and generating appropriate adaptive immunity to IAV.