Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 333-350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561095

RESUMEN

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.


Asunto(s)
Animales Recién Nacidos , Tronco Encefálico , Lipopolisacáridos , Sepsis Neonatal , Receptor Toll-Like 1 , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 2/metabolismo , Sepsis Neonatal/metabolismo , Tronco Encefálico/metabolismo , Receptor Toll-Like 1/metabolismo , Lipopéptidos/farmacología , Respiración/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Astrocitos/metabolismo , Masculino , Ligandos , Microglía/metabolismo , Femenino , Inflamación/metabolismo
2.
Brain Behav Immun ; 108: 221-232, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36494047

RESUMEN

Chemotherapy remains a mainstay in the treatment of many types of cancer even though it is associated with debilitating behavioral side effects referred to as "chemobrain," including difficulty concentrating and memory impairment. The predominant hypothesis in the field is that systemic inflammation drives these cognitive impairments, although the brain mechanisms by which this occurs remain poorly understood. Here, we hypothesized that microglia are activated by chemotherapy and drive chemotherapy-associated cognitive impairments. To test this hypothesis, we treated female C57BL/6 mice with a clinically-relevant regimen of a common chemotherapeutic, paclitaxel (6 i.p. doses at 30 mg/kg), which impairs memory of an aversive stimulus as assessed via a contextual fear conditioning (CFC) paradigm. Paclitaxel increased the percent area of IBA1 staining in the dentate gyrus of the hippocampus. Moreover, using a machine learning random forest classifier we identified immunohistochemical features of reactive microglia in multiple hippocampal subregions that were distinct between vehicle- and paclitaxel-treated mice. Paclitaxel treatment also increased gene expression of inflammatory cytokines in a microglia-enriched population of cells from mice. Lastly, a selective inhibitor of colony stimulating factor 1 receptor, PLX5622, was employed to deplete microglia and then assess CFC performance following paclitaxel treatment. PLX5622 significantly reduced hippocampal gene expression of paclitaxel-induced proinflammatory cytokines and restored memory, suggesting that microglia play a critical role in the development of chemotherapy-associated neuroinflammation and cognitive impairments. This work provides critical evidence that microglia drive paclitaxel-associated cognitive impairments, a key mechanistic detail for determining preventative and intervention strategies for these burdensome side effects.


Asunto(s)
Disfunción Cognitiva , Microglía , Ratones , Femenino , Animales , Microglía/metabolismo , Paclitaxel/efectos adversos , Ratones Endogámicos C57BL , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Citocinas/metabolismo , Hipocampo/metabolismo
3.
Org Biomol Chem ; 21(42): 8535-8547, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37840474

RESUMEN

We describe the synthesis of trihydroxylated cyclohexane ß-amino acids from (-)-shikimic acid, in their cis and trans configuration, and the incorporation of the trans isomer into a trans-2-aminocyclohexanecarboxylic acid peptide chain. Subsequently, the hydroxyl groups were partially or totally deprotected. The structural study of the new peptides by FTIR, CD, solution NMR and DFT calculations revealed that they all fold into a 14-helix secondary structure, similarly to the homooligomer of trans-2-aminocyclohexanecarboxylic acid. This means that the high degree of substitution of the cyclohexane ring of the new residue is compatible with the adoption of a stable helical secondary structure and opens opportunities for the design of more elaborate peptidic foldamers with oriented polar substituents at selected positions of the cycloalkane residues.


Asunto(s)
Aminoácidos , Ácidos Ciclohexanocarboxílicos , Aminoácidos/química , Péptidos/química , Estructura Secundaria de Proteína
4.
J Dairy Sci ; 106(7): 4533-4544, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225584

RESUMEN

The continuously increasing demand of lactic acid opens a window for the integration of membrane technology in the dairy industry, improving the sustainability by avoiding the use of large amounts of chemicals and waste generation. Lactic acid recovery from fermentation broth without precipitation has been studied by numerous processes. In this work, a commercial membrane with high lactose rejection and a moderate lactic acid rejection, enabling a permselectivity up to 40%, is sought to perform the simultaneous removal of lactic acid and lactose separation from the acidified sweet whey from mozzarella cheese production in a single stage. The AFC30 membrane of the thin film composite nanofiltration (NF) type was selected because of its high negative charge, low isoelectric point, and divalent ion rejection, as well as a lactose rejection higher than 98% and a lactic acid rejection lower than 37%, at pH 3.5, to minimize the need of additional separation steps. The experimental lactic acid rejection was evaluated at varying feed concentration, pressure, temperature, and flow rate. As the dissociation degree of lactic acid is negligible in industrially simulated conditions, the performance of this NF membrane was validated by the irreversible thermodynamic Kedem-Katchalsky and Spiegler-Kedem models, with the best prediction in the latter case, with the parameter values: Lp = 3.24 ± 0.87 L × m-2 × h-1 × bar-1 and = 15.06 ± 3.17 L × m-2 × h-1, and σ = 0.45 ± 0.03. The results obtained in this work open the way for the up-scaling of membrane technology on the valorization of dairy effluents by simplifying the operation process and the model prediction and the choice of the membrane.


Asunto(s)
Queso , Suero Lácteo , Animales , Lactosa , Ácido Láctico , Membranas Artificiales , Proteína de Suero de Leche
5.
Molecules ; 27(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35208977

RESUMEN

Two mass-accommodation methods are proposed to describe the melting of paraffin wax used as a phase-change material in a centrally heated annular region. The two methods are presented as models where volume changes produced during the phase transition are incorporated through total mass conservation. The mass of the phase-change material is imposed as a constant, which brings an additional equation of motion. Volume changes in a cylindrical unit are pictured in two different ways. On the one hand, volume changes in the radial direction are proposed through an equation of motion where the outer radius of the cylindrical unit is promoted as a dynamical variable of motion. On the other hand, volume changes along the axial symmetry axis of the cylindrical unit are proposed through an equation of motion, where the excess volume of liquid constitutes the dynamical variable. The energy-mass balance at the liquid-solid interface is obtained according to each method of conceiving volume changes. The resulting energy-mass balance at the interface constitutes an equation of motion for the radius of the region delimited by the liquid-solid interface. Subtle differences are found between the equations of motion for the interface. The differences are consistent with mass conservation and local mass balance at the interface. Stationary states for volume changes and the radius of the region delimited by the liquid-solid interface are obtained for each mass-accommodation method. We show that the relationship between these steady states is proportional to the relationship between liquid and solid densities when the system is close to the high melting regime. Experimental tests are performed in a vertical annular region occupied by a paraffin wax. The boundary conditions used in the experimental tests produce a thin liquid layer during a melting process. The experimental results are used to characterize the phase-change material through the proposed models in this work. Finally, the thermodynamic properties of the paraffin wax are estimated by minimizing the quadratic error between the temperature readings within the phase-change material and the temperature field predicted by the proposed model.

6.
Molecules ; 27(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35408556

RESUMEN

The Stefan problem regarding the formation of several liquid-solid interfaces produced by the oscillations of the ambient temperature around the melting point of a phase change material has been addressed by several authors. Numerical and semi-analytical methods have been used to find the thermal response of a phase change material under these type of boundary conditions. However, volume changes produced by the moving fronts and their effects on the thermal performance of phase change materials have not been addressed. In this work, volume changes are incorporated through an additional equation of motion for the thickness of the system. The thickness of the phase change material becomes a dynamic variable of motion by imposing total mass conservation. The modified equation of motion for each interface is obtained by coupling mass conservation with a local energy-mass balance at each front. The dynamics of liquid-solid interface configurations is analyzed in the transient and steady periodic regimes. Finite element and heat balance integral methods are used to verify the consistency of the solutions to the proposed model. The heat balance integral method is modified and adapted to find approximate solutions when two fronts collide, and the temperature profiles are not smooth. Volumetric corrections to the sensible and latent heat released (absorbed) are introduced during front formation, annihilation, and in the presence of two fronts. Finally, the thermal energy released by the interior surface is estimated through the proposed model and compared with the solutions obtained through models proposed by other authors.

7.
J Neurophysiol ; 125(4): 1164-1179, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502943

RESUMEN

Modern neurophysiology research requires the interrogation of high-dimensionality data sets. Machine learning and artificial intelligence (ML/AI) workflows have permeated into nearly all aspects of daily life in the developed world but have not been implemented routinely in neurophysiological analyses. The power of these workflows includes the speed at which they can be deployed, their availability of open-source programming languages, and the objectivity permitted in their data analysis. We used classification-based algorithms, including random forest, gradient boosted machines, support vector machines, and neural networks, to test the hypothesis that the animal genotypes could be separated into their genotype based on interpretation of neurophysiological recordings. We then interrogate the models to identify what were the major features utilized by the algorithms to designate genotype classification. By using raw EEG and respiratory plethysmography data, we were able to predict which recordings came from genotype class with accuracies that were significantly improved relative to the no information rate, although EEG analyses showed more overlap between groups than respiratory plethysmography. In comparison, conventional methods where single features between animal classes were analyzed, differences between the genotypes tested using baseline neurophysiology measurements showed no statistical difference. However, ML/AI workflows successfully were capable of providing successful classification, indicating that interactions between features were different in these genotypes. ML/AI workflows provide new methodologies to interrogate neurophysiology data. However, their implementation must be done with care so as to provide high rigor and reproducibility between laboratories. We provide a series of recommendations on how to report the utilization of ML/AI workflows for the neurophysiology community.NEW & NOTEWORTHY ML/AI classification workflows are capable of providing insight into differences between genotypes for neurophysiology research. Analytical techniques utilized in the neurophysiology community can be augmented by implementing ML/AI workflows. Random forest is a robust classification algorithm for respiratory plethysmography data. Utilization of ML/AI workflows in neurophysiology research requires heightened transparency and improved community research standards.


Asunto(s)
Electroencefalografía , Perfilación de la Expresión Génica , Aprendizaje Automático , Neurofisiología/métodos , Pletismografía , Respiración , Sueño/fisiología , Animales , Astrocitos , Electroencefalografía/métodos , Perfilación de la Expresión Génica/métodos , Genotipo , Proteínas de Homeodominio , Ratones , Pletismografía/métodos , Factores de Transcripción , Flujo de Trabajo
8.
Molecules ; 26(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445694

RESUMEN

Front tracking and enthalpy methods used to study phase change processes are based on a local thermal energy balance at the liquid-solid interface where mass accommodation methods are also used to account for the density change during the phase transition. Recently, it has been shown that a local thermal balance at the interface does not reproduce the thermodynamic equilibrium in adiabatic systems. Total thermal balance through the entire liquid-solid system can predict the correct thermodynamic equilibrium values of melted (solidified) mass, system size, and interface position. In this work, total thermal balance is applied to systems with isothermal-adiabatic boundary conditions to estimate the sensible and latent heat stored (released) by KNO3 and KNO3/NaNO3 salts which are used as high-temperature phase change materials. Relative percent differences between the solutions obtained with a local thermal balance at the interface and a total thermal balance for the thermal energy absorbed or released by high-temperature phase change materials are obtained. According to the total thermal balance proposed, a correction to the liquid-solid interface dynamics is introduced, which accounts for an extra amount of energy absorbed or released during the phase transition. It is shown that melting or solidification rates are modified by using a total thermal balance through the entire system. Finally, the numerical and semi-analytical methods illustrate that volume changes and the fraction of melted (solidified) solid (liquid) estimated through a local thermal balance at the interface are not invariant in adiabatic systems. The invariance of numerical and semi-analytical solutions in adiabatic systems is significantly improved through the proposed model.


Asunto(s)
Transición de Fase , Temperatura , Análisis de Elementos Finitos , Nitratos/química , Compuestos de Potasio/química , Soluciones
9.
Am J Pathol ; 189(2): 426-439, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30579783

RESUMEN

Mounting evidence in the literature suggests that RNA-RNA binding protein aggregations can disturb neuronal homeostasis and lead to symptoms associated with normal aging as well as dementia. The specific ablation of cyclin A2 in adult neurons results in neuronal polyribosome aggregations and learning and memory deficits. Detailed histologic and ultrastructural assays of aged mice revealed that post-mitotic hippocampal pyramidal neurons maintain cyclin A2 expression and that proliferative cells in the dentate subgranular zone express cyclin A2. Cyclin A2 loss early during neural development inhibited hippocampal development through canonical/cell-cycle mechanisms, including prolonged cell cycle timing in embryonic hippocampal progenitor cells. However, in mature neurons, cyclin A2 colocalized with dendritic rRNA. Cyclin A2 ablation in adult hippocampus resulted in decreased synaptic density in the hippocampus as well as in accumulation of rRNA granules in dendrite shafts. We conclude that cyclin A2 functions in a noncanonical/non-cell cycle regulatory role to maintain adult pyramidal neuron ribostasis.


Asunto(s)
Envejecimiento , Ciclina A2/deficiencia , Gránulos Citoplasmáticos , Hipocampo , Células Piramidales , ARN Ribosómico/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Ciclina A2/metabolismo , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Células Piramidales/metabolismo , Células Piramidales/patología , ARN Ribosómico/genética , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología
10.
J Physiol ; 597(8): 2225-2251, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30707772

RESUMEN

KEY POINTS: The embryonic PHOX2B-progenitor domain generates neuronal and glial cells which together are involved in chemosensory control of breathing and sleep homeostasis. Ablating PHOX2B-derived astrocytes significantly contributes to secondary hypoxic respiratory depression as well as abnormalities in sleep homeostasis. PHOX2B-derived astrocyte ablation results in axonal pathologies in the retrotrapezoid nucleus. ABSTRACT: We identify in mice a population of ∼800 retrotrapezoid nucleus (RTN) astrocytes derived from PHOX2B-positive, OLIG3-negative progenitor cells, that interact with PHOX2B-expressing RTN chemosensory neurons. PHOX2B-derived astrocyte ablation during early life results in adult-onset O2 chemoreflex deficiency. These animals also display changes in sleep homeostasis, including fragmented sleep and disturbances in delta power after sleep deprivation, all without observable changes in anxiety or social behaviours. Ultrastructural evaluation of the RTN demonstrates that PHOX2B-derived astrocyte ablation results in features characteristic of degenerative neuro-axonal dystrophy, including abnormally dilated axon terminals and increased amounts of synapses containing autophagic vacuoles/phagosomes. We conclude that PHOX2B-derived astrocytes are necessary for maintaining a functional O2 chemosensory reflex in the adult, modulate sleep homeostasis, and are key regulators of synaptic integrity in the RTN region, which is necessary for the chemosensory control of breathing. These data also highlight how defects in embryonic development may manifest as neurodegenerative pathology in an adult.


Asunto(s)
Astrocitos/fisiología , Proteínas de Homeodominio/fisiología , Respiración , Sueño/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Homeostasis , Ratones Transgénicos , Neuronas/fisiología
11.
Am J Pathol ; 188(1): 4-5, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030050

RESUMEN

This Guest Editorial introduces this month's special Neural Regeneration and Development Theme Issue, a series of reviews intended to highlight the advances in modern neuroscience and to depict the chasms in our understanding of the brain.


Asunto(s)
Encéfalo/fisiología , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Humanos
12.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871074

RESUMEN

The use of flours as a material for biopolymer-based film preparation has gained interest due to the fact that they are a natural mixture of compatible macromolecules and due to their low cost. Chickpea flour shows a promising composition for the development of edible films. The aim of this study was to characterize and evaluate the properties of chickpea flour films as affected by pH (7 or 10) and plasticizer concentration (1% or 3% w/v) of film-forming solutions. Water vapor permeability, solubility, color, opacity, mechanical properties, thermal stability, structural changes by Fourier transform infrared analysis, and microstructure of the films were determined. Glycerol content and pH influenced chickpea flour film properties, microstructure and structural organization; interactions were also observed. The 1% glycerol films showed lower water vapor permeability, thickness, radical scavenging capacity, elongation at break and puncture deformation, and higher dry matter content, swelling, opacity, elastic modulus, and tensile and puncture strengths than 3% glycerol films. Film-forming solutions at pH 10 produced films with higher thickness and swelling, and were greener than those from solutions at neutral pH. The changes were more intense in 1% glycerol films. Glycerol concentration and pH could be combined in order to obtain chickpea flour films with different properties according to different food packaging requirements.


Asunto(s)
Cicer/química , Plastificantes/química , Biopolímeros/química , Módulo de Elasticidad , Harina , Embalaje de Alimentos/métodos , Glicerol/química , Concentración de Iones de Hidrógeno , Permeabilidad , Solubilidad , Vapor , Agua/química
13.
Molecules ; 24(7)2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30935080

RESUMEN

Density changes produced by pressure increments during melting of a spherically confined phase-change material have an impact on the thermal energy absorbed by the heat storage unit. Several authors have assumed incompressible phases to estimate the volume change of the phase-change material and the thermal balance at the liquid⁻solid interface. This assumption simplifies the problem but neglects the contribution of density changes to the thermal energy absorbed. In this work, a thermal balance at the interface that depends on the rate of change of the densities and on the shape of the container is found by imposing total mass conservation. The rigidity of the container is tuned through the coupling constant of an array of springs surrounding the phase-change material. This way, the behavior of the system can be probed from the isobaric to the isochoric regimes. The sensible and latent heat absorbed during the melting process are obtained by solving the proposed model through numerical and semi-analytical methods. Comparing the predictions obtained through our model, it is found that even for moderate pressures, the absorbed thermal energy predicted by other authors can be significantly overestimated.


Asunto(s)
Cápsulas/química , Microesferas , Modelos Moleculares , Congelación , Transición de Fase , Presión , Propiedades de Superficie , Termodinámica , Temperatura de Transición
14.
Chemistry ; 24(42): 10601-10605, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29893500

RESUMEN

Capture of pharmaceutical pollutants from water was studied using a novel fluorine-bearing covalent organic framework TpBD-(CF3 )2 , which showed ibuprofen adsorption capacity of 119 mg g-1 at neutral pH. This value is further enhanced at pH 2, highlighting the potential of this class of materials to serve as adsorbents even under harsh conditions. The adsorbed pharmaceutical can be recovered from TpBD-(CF3 )2 in high yield, offering the option of recycling both the adsorbent and the pharmaceutical. The high efficiency of ibuprofen capture as compared to other less lipophilic pharmaceuticals suggests that COFs can be pre-designed for selective capture of contaminants.

15.
Ann Diagn Pathol ; 36: 12-20, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29966831

RESUMEN

Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.


Asunto(s)
Isquemia/metabolismo , Proteínas de Transporte de Membrana/genética , MicroARNs/genética , Traumatismos de la Médula Espinal/genética , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica/métodos , Isquemia/genética , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Enfermedades del Sistema Nervioso/genética , Neuronas/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Simportadores , Proteínas Supresoras de Tumor/genética
16.
Sensors (Basel) ; 18(1)2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29267219

RESUMEN

A soft sensor is presented that approximates certain health parameters of automotive rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on a model of the open circuit voltage curve. This last model is implemented through monotonic neural networks and estimate over-potentials arising from the evolution in time of the Lithium concentration in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained in operational records of the vehicle better than the alternatives, this being particularly true when the charge or discharge currents are between moderate and high. The accuracy of the neural model has been compared to different alternatives, including data-driven statistical models, first principle-based models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded that monotonic echo state networks can outperform well established first-principle models. The algorithms have been validated with automotive Li-FePO4 cells.

17.
J Neurophysiol ; 116(2): 742-52, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226447

RESUMEN

The developmental lineage of the PHOX2B-expressing neurons in the retrotrapezoid nucleus (RTN) has been extensively studied. These cells are thought to function as central respiratory chemoreceptors, i.e., the mechanism by which brain Pco2 regulates breathing. The molecular and cellular basis of central respiratory chemoreception is based on the detection of CO2 via intrinsic proton receptors (TASK-2, GPR4) as well as synaptic input from peripheral chemoreceptors and other brain regions. Murine models of congenital central hypoventilation syndrome designed with PHOX2B mutations have suggested RTN neuron agenesis. In this review, we examine, through human and experimental animal models, how a restricted number of neurons that express the transcription factor PHOX2B play a crucial role in the control of breathing and autonomic regulation.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Hipoventilación/congénito , Trastornos Respiratorios/etiología , Apnea Central del Sueño/complicaciones , Animales , Enfermedades del Sistema Nervioso Autónomo/genética , Células Quimiorreceptoras/fisiología , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Humanos , Hipoventilación/complicaciones , Hipoventilación/genética , Hipoventilación/patología , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/patología , Trastornos Respiratorios/genética , Apnea Central del Sueño/genética , Apnea Central del Sueño/patología , Factores de Transcripción/genética
18.
J Neurovirol ; 22(5): 683-687, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27273076

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a viral demyelinating disease due to the reactivation of the JC virus (JCV), which usually occurs in the context of immunosuppression in HIV infection, malignancy, or in patients on disease modifying therapy for autoimmune diseases, such as multiple sclerosis (MS) and Crohn's disease. Notably, there is growing recognition that PML can occur in patients with transient immune dysfunction. Here, we present a case of a 55-year-old man without history of immunosuppression or evidence of ICL who was diagnosed with PML on brain biopsy. We will discuss the potential etiologies of mild and transient immunosuppression that can lead to PML with non-apparent immunosuppression.


Asunto(s)
Encéfalo/patología , Disfunción Cognitiva/patología , Diplopía/patología , Leucoencefalopatía Multifocal Progresiva/patología , Incontinencia Urinaria/patología , Vértigo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/inmunología , Encéfalo/virología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/virología , Diplopía/diagnóstico por imagen , Diplopía/inmunología , Diplopía/virología , Progresión de la Enfermedad , Resultado Fatal , Humanos , Inmunocompetencia , Virus JC/inmunología , Virus JC/aislamiento & purificación , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen , Leucoencefalopatía Multifocal Progresiva/inmunología , Leucoencefalopatía Multifocal Progresiva/virología , Masculino , Persona de Mediana Edad , Incontinencia Urinaria/diagnóstico por imagen , Incontinencia Urinaria/inmunología , Incontinencia Urinaria/virología , Vértigo/diagnóstico por imagen , Vértigo/inmunología , Vértigo/virología
19.
Chemistry ; 22(35): 12557-65, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27439720

RESUMEN

In the search for alternative non-metabolizable inducers in the l-rhamnose promoter system, the synthesis of fifteen 6-deoxyhexoses from l-rhamnose demonstrates the value of synergy between biotechnology and chemistry. The readily available 2,3-acetonide of rhamnonolactone allows inversion of configuration at C4 and/or C5 of rhamnose to give 6-deoxy-d-allose, 6-deoxy-d-gulose and 6-deoxy-l-talose. Highly crystalline 3,5-benzylidene rhamnonolactone gives easy access to l-quinovose (6-deoxy-l-glucose), l-olivose and rhamnose analogue with C2 azido, amino and acetamido substituents. Electrophilic fluorination of rhamnal gives a mixture of 2-deoxy-2-fluoro-l-rhamnose and 2-deoxy-2-fluoro-l-quinovose. Biotechnology provides access to 6-deoxy-l-altrose and 1-deoxy-l-fructose.


Asunto(s)
Desoxiazúcares/química , Desoxiglucosa/análogos & derivados , Fructosa/química , Glucosa/química , Hexosas/química , Ramnosa/química , Biotecnología , Desoxiglucosa/química , Operón
20.
Nanomedicine ; 12(2): 399-409, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26711960

RESUMEN

Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR: In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Reprogramación Celular , Proteínas de Unión al ADN/genética , ADN/administración & dosificación , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Factores del Dominio POU/genética , Factores de Transcripción/genética , Transfección/métodos , Animales , Línea Celular , ADN/genética , Electroporación/métodos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Plásmidos/administración & dosificación , Plásmidos/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA