Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(16): 4251-4267.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34260899

RESUMEN

Genetic recombination generates novel trait combinations, and understanding how recombination is distributed across the genome is key to modern genetics. The PRDM9 protein defines recombination hotspots; however, megabase-scale recombination patterning is independent of PRDM9. The single round of DNA replication, which precedes recombination in meiosis, may establish these patterns; therefore, we devised an approach to study meiotic replication that includes robust and sensitive mapping of replication origins. We find that meiotic DNA replication is distinct; reduced origin firing slows replication in meiosis, and a distinctive replication pattern in human males underlies the subtelomeric increase in recombination. We detected a robust correlation between replication and both contemporary and historical recombination and found that replication origin density coupled with chromosome size determines the recombination potential of individual chromosomes. Our findings and methods have implications for understanding the mechanisms underlying DNA replication, genetic recombination, and the landscape of mammalian germline variation.


Asunto(s)
Células Germinativas/citología , Recombinación Homóloga , Meiosis , Animales , Composición de Base/genética , Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Replicación del ADN , Genoma , Células Germinativas/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Ratones , Origen de Réplica , Fase S , Telómero/metabolismo , Testículo/citología
2.
Genes Dev ; 34(11-12): 731-732, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32482713

RESUMEN

The exchange of genetic information between parental chromosomes in meiosis is an integral process for the creation of gametes. To generate a crossover, hundreds of DNA double-strand breaks (DSBs) are introduced in the genome of each meiotic cell by the SPO11 protein. The nucleolytic resection of DSB-adjacent DNA is a key step in meiotic DSB repair, but this process has remained understudied. In this issue of Genes & Development, Yamada and colleagues (pp. 806-818) capture some of the first details of resection and DSB repair intermediates in mouse meiosis using a method that maps blunt-ended DNA after ssDNA digestion. This yields some of the first genome-wide insights into DSB resection and repair in a mammalian genome and offers a tantalizing glimpse of how to quantitatively dissect this difficult to study, yet integral, nuclear process.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Meiosis , Animales , Cromatina/química , Cromatina/metabolismo , ADN/química , Meiosis/genética , Estructura Molecular , Recombinación Genética
3.
Mol Cell ; 74(5): 1053-1068.e8, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31003867

RESUMEN

Double-strand breaks (DSBs) initiate the homologous recombination that is crucial for meiotic chromosome pairing and segregation. Here, we unveil mouse ANKRD31 as a lynchpin governing multiple aspects of DSB formation. Spermatocytes lacking ANKRD31 have altered DSB locations and fail to target DSBs to the pseudoautosomal regions (PARs) of sex chromosomes. They also have delayed and/or fewer recombination sites but, paradoxically, more DSBs, suggesting DSB dysregulation. Unrepaired DSBs and pairing failures-stochastic on autosomes, nearly absolute on X and Y-cause meiotic arrest and sterility in males. Ankrd31-deficient females have reduced oocyte reserves. A crystal structure defines a pleckstrin homology (PH) domain in REC114 and its direct intermolecular contacts with ANKRD31. In vivo, ANKRD31 stabilizes REC114 association with the PAR and elsewhere. Our findings inform a model in which ANKRD31 is a scaffold anchoring REC114 and other factors to specific genomic locations, thereby regulating DSB formation.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Recombinación Homóloga/genética , Meiosis/genética , Recombinasas/química , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico , Segregación Cromosómica/genética , Cromosomas , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Femenino , Masculino , Ratones , Conformación Proteica , Recombinasas/genética , Espermatocitos/química , Espermatocitos/metabolismo
4.
Mol Cell ; 76(4): 676-690.e10, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31495564

RESUMEN

Conventional methods for single-cell genome sequencing are limited with respect to uniformity and throughput. Here, we describe sci-L3, a single-cell sequencing method that combines combinatorial indexing (sci-) and linear (L) amplification. The sci-L3 method adopts a 3-level (3) indexing scheme that minimizes amplification biases while enabling exponential gains in throughput. We demonstrate the generalizability of sci-L3 with proof-of-concept demonstrations of single-cell whole-genome sequencing (sci-L3-WGS), targeted sequencing (sci-L3-target-seq), and a co-assay of the genome and transcriptome (sci-L3-RNA/DNA). We apply sci-L3-WGS to profile the genomes of >10,000 sperm and sperm precursors from F1 hybrid mice, mapping 86,786 crossovers and characterizing rare chromosome mis-segregation events in meiosis, including instances of whole-genome equational chromosome segregation. We anticipate that sci-L3 assays can be applied to fully characterize recombination landscapes, to couple CRISPR perturbations and measurements of genome stability, and to other goals requiring high-throughput, high-coverage single-cell sequencing.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Amplificación de Ácido Nucleico , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Secuenciación Completa del Genoma , Animales , Segregación Cromosómica , Masculino , Meiosis/genética , Ratones , Prueba de Estudio Conceptual , Espermatozoides/fisiología , Transcriptoma , Flujo de Trabajo
6.
Nature ; 582(7812): 426-431, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32461690

RESUMEN

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Asunto(s)
Roturas del ADN de Doble Cadena , Meiosis , Regiones Pseudoautosómicas/genética , Regiones Pseudoautosómicas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Emparejamiento Cromosómico/genética , Proteínas de Unión al ADN , Femenino , Heterocromatina/genética , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , Cinética , Masculino , Meiosis/genética , Ratones , Repeticiones de Minisatélite/genética , Oocitos/metabolismo , Recombinación Genética/genética , Caracteres Sexuales , Intercambio de Cromátides Hermanas , Espermatocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Nature ; 561(7723): 338-342, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30185906

RESUMEN

Meiotic recombination differs between males and females; however, when and how these differences are established is unknown. Here we identify extensive sex differences at the initiation of recombination by mapping hotspots of meiotic DNA double-strand breaks in male and female mice. Contrary to past findings in humans, few hotspots are used uniquely in either sex. Instead, grossly different recombination landscapes result from up to fifteen-fold differences in hotspot usage between males and females. Indeed, most recombination occurs at sex-biased hotspots. Sex-biased hotspots seem to be partly determined by chromosome structure, and DNA methylation, which is absent in females at the onset of meiosis, has a substantial role. Sex differences are also evident later in meiosis as the rate at which meiotic breaks are repaired as crossovers differs between males and females in distal regions. The suppression of distal crossovers may help to minimize age-related aneuploidy that arises owing to cohesion loss during dictyate arrest in females.


Asunto(s)
Intercambio Genético/genética , Meiosis/genética , Caracteres Sexuales , Animales , Roturas del ADN de Doble Cadena , Metilación de ADN/genética , Femenino , Masculino , Ratones
8.
Genes Dev ; 30(7): 871, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036969

RESUMEN

Due to a technical error in processing the figures in the above-mentioned article, Figures 3, A and B; 4B; 5B; and 6, A and C contained errors or missing elements. The errors have been corrected in both the PDF and full-text HTML files online.

9.
Genes Dev ; 30(3): 266-80, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833728

RESUMEN

Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation.


Asunto(s)
Evolución Biológica , Especiación Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones/clasificación , Ratones/genética , Recombinación Genética/genética , Alelos , Animales , Roturas del ADN de Doble Cadena , N-Metiltransferasa de Histona-Lisina/genética , Hibridación Genética , Unión Proteica
10.
Genome Res ; 29(7): 1078-1086, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31186301

RESUMEN

A hallmark of meiosis is the rearrangement of parental alleles to ensure genetic diversity in the gametes. These chromosome rearrangements are mediated by the repair of programmed DNA double-strand breaks (DSBs) as genetic crossovers between parental homologs. In mice, humans, and many other mammals, meiotic DSBs occur primarily at hotspots, determined by sequence-specific binding of the PRDM9 protein. Without PRDM9, meiotic DSBs occur near gene promoters and other functional sites. Studies in a limited number of mouse strains showed that functional PRDM9 is required to complete meiosis, but despite its apparent importance, Prdm9 has been repeatedly lost across many animal lineages. Both the reason for mouse sterility in the absence of PRDM9 and the mechanism by which Prdm9 can be lost remain unclear. Here, we explore whether mice can tolerate the loss of Prdm9 By generating Prdm9 functional knockouts in an array of genetic backgrounds, we observe a wide range of fertility phenotypes and ultimately demonstrate that PRDM9 is not required for completion of male meiosis. Although DSBs still form at a common subset of functional sites in all mice lacking PRDM9, meiotic outcomes differ substantially. We speculate that DSBs at functional sites are difficult to repair as a crossover and that by increasing the efficiency of crossover formation at these sites, genetic modifiers of recombination rates can allow for meiotic progression. This model implies that species with a sufficiently high recombination rate may lose Prdm9 yet remain fertile.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/fisiología , Meiosis , Animales , Femenino , Fertilidad/genética , Fertilidad/fisiología , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatogénesis/fisiología , Cromosoma X
11.
Nature ; 530(7589): 171-176, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26840484

RESUMEN

The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.


Asunto(s)
Especiación Genética , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Hibridación Genética/genética , Infertilidad/genética , Ingeniería de Proteínas , Dedos de Zinc/genética , Alelos , Animales , Sitios de Unión , Emparejamiento Cromosómico/genética , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Roturas del ADN de Doble Cadena , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Estructura Terciaria de Proteína/genética , Recombinación Genética/genética
12.
J Eur Acad Dermatol Venereol ; 36(2): 286-294, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34634163

RESUMEN

BACKGROUND: Oral finasteride is a well-established treatment for men with androgenetic alopecia (AGA), but long-term therapy is not always acceptable to patients. A topical finasteride formulation has been developed to minimize systemic exposure by acting specifically on hair follicles. OBJECTIVES: To evaluate the efficacy and safety of topical finasteride compared with placebo, and to analyse systemic exposure and overall benefit compared with oral finasteride. METHODS: This randomized, double-blind, double dummy, parallel-group, 24-week study was conducted in adult male outpatients with AGA at 45 sites in Europe. Efficacy and safety were evaluated. Finasteride, testosterone and dihydrotestosterone (DHT) concentrations were measured. RESULTS: Of 458 randomized patients, 323 completed the study and 446 were evaluated for safety. Change from baseline in target area hair count (TAHC) at week 24 (primary efficacy endpoint) was significantly greater with topical finasteride than placebo (adjusted mean change 20.2 vs. 6.7 hairs; P < 0.001), and numerically similar between topical and oral finasteride. Statistically significant differences favouring topical finasteride over placebo were observed for change from baseline in TAHC at week 12 and investigator-assessed change from baseline in patient hair growth/loss at week 24. Incidence and type of adverse events, and cause of discontinuation, did not differ meaningfully between topical finasteride and placebo. No serious adverse events were treatment related. As maximum plasma finasteride concentrations were >100 times lower, and reduction from baseline in mean serum DHT concentration was lower (34.5 vs. 55.6%), with topical vs. oral finasteride, there is less likelihood of systemic adverse reactions of a sexual nature related to a decrease in DHT with topical finasteride. CONCLUSION: Topical finasteride significantly improves hair count compared to placebo and is well tolerated. Its effect is similar to that of oral finasteride, but with markedly lower systemic exposure and less impact on serum DHT concentrations.


Asunto(s)
Alopecia , Finasterida , Adulto , Alopecia/tratamiento farmacológico , Dihidrotestosterona , Método Doble Ciego , Finasterida/efectos adversos , Cabello , Humanos , Masculino
13.
BMC Biol ; 19(1): 86, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910563

RESUMEN

BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.


Asunto(s)
Meiosis , Animales , Cromatina , Roturas del ADN de Doble Cadena , Femenino , Fertilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Meiosis/genética , Ratones , Ratas , Ratas Endogámicas SHR , Espermatogénesis/genética
14.
Phys Rev Lett ; 122(17): 176801, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31107081

RESUMEN

The discretization of the electronic structure of nanometer-size solid systems due to quantum confinement and the concomitant modification of their physical properties is one of the cornerstones for the development of nanoscience and nanotechnology. In this Letter we demonstrate that the Bragg scattering of Cu(111) surface-state electrons by the periodic arrangement of tetracyanoquinodimethane molecules at the edges of self-assembled molecular islands, along with the dominant contribution of backscattering processes to the electronic density of states, discretizes the possible values of the electron momentum parallel to the island edge. The electronic structure consists thus of a discrete number of subbands which occur in a nonclosed space, and therefore without quantum confinement.

15.
Genes Dev ; 25(9): 959-71, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536735

RESUMEN

Chromosome-wide inactivation is an epigenetic signature of sex chromosomes. The mechanism by which the chromosome-wide domain is recognized and gene silencing is induced remains unclear. Here we identify an essential mechanism underlying the recognition of the chromosome-wide domain in the male germline. We show that mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX), defines the chromosome-wide domain, initiates meiotic sex chromosome inactivation (MSCI), and leads to XY body formation. Importantly, MSCI consists of two genetically separable steps. The first step is the MDC1-independent recognition of the unsynapsed axis by DNA damage response (DDR) factors such as ataxia telangiectasia and Rad3-related (ATR), TOPBP1, and γH2AX. The second step is the MDC1-dependent chromosome-wide spreading of DDR factors to the entire chromatin. Furthermore, we demonstrate that, in somatic cells, MDC1-dependent amplification of the γH2AX signal occurs following replicative stress and is associated with transcriptional silencing. We propose that a common DDR pathway underlies both MSCI and the response of somatic cells to replicative stress. These results establish that the DDR pathway centered on MDC1 triggers epigenetic silencing of sex chromosomes in germ cells.


Asunto(s)
Compensación de Dosificación (Genética)/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cromosomas Sexuales/genética , Espermatozoides/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Línea Celular , Femenino , Heterocromatina/metabolismo , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Recombinación Genética , Testículo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Nature ; 485(7400): 642-5, 2012 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-22660327

RESUMEN

Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.


Asunto(s)
Roturas del ADN de Doble Cadena , Genoma/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Regiones Promotoras Genéticas/genética , Recombinación Genética/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/metabolismo , Meiosis/genética , Metilación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular
17.
Nature ; 487(7406): 254-8, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22722828

RESUMEN

In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY). X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNA Xist. Xist is not found in metatherians (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades. Using the marsupial Monodelphis domestica, here we identify Rsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-chromosome inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.


Asunto(s)
Monodelphis/genética , Monodelphis/metabolismo , ARN/genética , ARN/metabolismo , Inactivación del Cromosoma X , Cromosoma X/genética , Cromosoma X/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Ratones , Transgenes
18.
Genes Dev ; 24(22): 2543-55, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20966046

RESUMEN

CCCTC-binding factor (CTCF) is a DNA-binding protein that plays important roles in chromatin organization, although the mechanism by which CTCF carries out these functions is not fully understood. Recent studies show that CTCF recruits the cohesin complex to insulator sites and that cohesin is required for insulator activity. Here we showed that the DEAD-box RNA helicase p68 (DDX5) and its associated noncoding RNA, steroid receptor RNA activator (SRA), form a complex with CTCF that is essential for insulator function. p68 was detected at CTCF sites in the IGF2/H19 imprinted control region (ICR) as well as other genomic CTCF sites. In vivo depletion of SRA or p68 reduced CTCF-mediated insulator activity at the IGF2/H19 ICR, increased levels of IGF2 expression, and increased interactions between the endodermal enhancer and IGF2 promoter. p68/SRA also interacts with members of the cohesin complex. Depletion of either p68 or SRA does not affect CTCF binding to its genomic sites, but does reduce cohesin binding. The results suggest that p68/SRA stabilizes the interaction of cohesin with CTCF by binding to both, and is required for proper insulator function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas Represoras/metabolismo , Alelos , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Mapeo Cromosómico , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células HeLa , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Unión Proteica , ARN/metabolismo , Cohesinas
19.
Rev Gastroenterol Peru ; 38(1): 54-63, 2018.
Artículo en Español | MEDLINE | ID: mdl-29791423

RESUMEN

This work is a review on the basic aspects of the treatment of Helicobacter pylori, highlighting the causes of treatment failure and strategies exist to optimize the treatment according to the best evidence posted. Stands out the antimicrobial resistance as the main cause of treatment failure, as well as the different compartments where the microorganism is hosted. Shows major schemes currently available and how to choose therapies first, second, third line and rescue therapies.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori , Inhibidores de la Bomba de Protones/uso terapéutico , Quimioterapia Combinada , Infecciones por Helicobacter/diagnóstico , Helicobacter pylori/aislamiento & purificación , Humanos , Insuficiencia del Tratamiento
20.
Br J Cancer ; 116(8): 994-1001, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28267709

RESUMEN

BACKGROUND: Our objective was to develop a prognostic stratification tool that enables patients with cancer and pulmonary embolism (PE), whether incidental or symptomatic, to be classified according to the risk of serious complications within 15 days. METHODS: The sample comprised cases from a national registry of pulmonary thromboembolism in patients with cancer (1075 patients from 14 Spanish centres). Diagnosis was incidental in 53.5% of the events in this registry. The Exhaustive CHAID analysis was applied with 10-fold cross-validation to predict development of serious complications following PE diagnosis. RESULTS: About 208 patients (19.3%, 95% confidence interval (CI), 17.1-21.8%) developed a serious complication after PE diagnosis. The 15-day mortality rate was 10.1%, (95% CI, 8.4-12.1%). The decision tree detected six explanatory covariates: Hestia-like clinical decision rule (any risk criterion present vs none), Eastern Cooperative Group performance scale (ECOG-PS; <2 vs ⩾2), O2 saturation (<90 vs ⩾90%), presence of PE-specific symptoms, tumour response (progression, unknown, or not evaluated vs others), and primary tumour resection. Three risk classes were created (low, intermediate, and high risk). The risk of serious complications within 15 days increases according to the group: 1.6, 9.4, 30.6%; P<0.0001. Fifteen-day mortality rates also rise progressively in low-, intermediate-, and high-risk patients: 0.3, 6.1, and 17.1%; P<0.0001. The cross-validated risk estimate is 0.191 (s.e.=0.012). The optimism-corrected area under the receiver operating characteristic curve is 0.779 (95% CI, 0.717-0.840). CONCLUSIONS: We have developed and internally validated a prognostic index to predict serious complications with the potential to impact decision-making in patients with cancer and PE.


Asunto(s)
Técnicas de Apoyo para la Decisión , Árboles de Decisión , Neoplasias/complicaciones , Embolia Pulmonar/diagnóstico , Medición de Riesgo/métodos , Índice de Severidad de la Enfermedad , Área Bajo la Curva , Femenino , Estudios de Seguimiento , Indicadores de Salud , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Embolia Pulmonar/etiología , Embolia Pulmonar/mortalidad , Sistema de Registros , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA