Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Biol Rep ; 51(1): 833, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039363

RESUMEN

BACKGROUND: Hepatotoxicity associated with methotrexate (MTX) is mainly due to disruption of redox balance and development of oxidative injury to hepatocytes. Melatonin (MLT) is a potent antioxidant and regulates wide range of biological functions, processes and utilized as adjuvant for number of medical applications. The current study investigated the mitigating effect of MLT on the MTX-induced hepatotoxicity. METHODS AND RESULTS: Adult male rats received MLT (25 mg/kg, orally) for seven days flowed by single injection of MTX (20 mg/kg, ip) then treat with MLT continued for additional 7 days. The present result showed MLT treatment mitigated histopathological changes in the liver that associated with normalization of ALT and AST activity as well as bilirubin, albumin and alfa-fetoprotein levels in serum of MLT + MTX-treated rat to comparable control level. MLT treatment significantly reduced MDA content and myeloperoxidase activity while enhanced the activity of superoxide dismutase, catalase and glutathione content in the liver indicating the empowerment of the antioxidant status. Amelioration of MLT-induced oxidative stress resulted in a reduction in the inflammatory response due to antioxidant restoration and inhibited apoptosis indicated by downregulation of caspase-3 expression. The replenishment of antioxidant content powers the defense system of the hepatocytes. As a result, apoptosis is reduced which might be due to the ability of MLT protect DNA integrity thus maintaining hepatocyte functions and structure. Consequently, liver histology was protected. CONCLUSIONS: In summary, MLT modulates liver function and structure by orchestrating linked processes, including redox balance, inflammatory response, suppression of caspase-3, and DNA damage.


Asunto(s)
Antioxidantes , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatocitos , Hígado , Melatonina , Metotrexato , Estrés Oxidativo , Animales , Metotrexato/efectos adversos , Metotrexato/toxicidad , Melatonina/farmacología , Ratas , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo , Catalasa/metabolismo
2.
Mol Biol Rep ; 50(7): 5827-5836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37222866

RESUMEN

BACKGROUND: Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accordingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical severity in patients with COVID-19. METHODS AND RESULTS: The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arterial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 patients from healthy controls. CONCLUSIONS: Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an adjuvant therapy in decreasing disease severity and death in COVID-19 patients.


Asunto(s)
COVID-19 , Melatonina , Humanos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antioxidantes/metabolismo , COVID-19/genética , Expresión Génica , Estrés Oxidativo/genética , Gravedad del Paciente , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo
3.
Mol Cell Biochem ; 477(12): 2817-2828, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35666430

RESUMEN

Pancreatic inflammation and oxidative damage remain major concerns in type 1 diabetes mellitus (T1DM). Punicalagin, a major polyphenol in pomegranates, exhibited antioxidant and protective effects on several organs in case of T1DM; however, no study has yet explored the protective effects of punicalagin on the pancreas and islets of Langerhans. T1DM was induced by injecting 40 mg/kg streptozotocin (STZ) intraperitoneally. Punicalagin (1 mg/kg ip) was injected daily for 15 days after T1DM induction. In diabetic rats, punicalagin treatment lowered the levels of inflammatory biomarkers (monocyte chemoattractant protein-1 and C-reactive protein) and adhesion molecules (E-selectin, intercellular adhesion molecule, and vascular cell adhesion molecule) while activating myeloperoxidase activity. Treatment of diabetic rats with punicalagin improved glutathione content and superoxide dismutase, catalase, and glutathione peroxidase activities; upregulated serum paraoxonase-1 activity; and prevented the elevation lipid peroxidation and protein oxidation products in the pancreas. Furthermore, punicalagin protected the pancreas against STZ-induced histopathological alterations and increased immune-reactive ß-cells while reducing leucocyte infiltration into the islets of Langerhans, leading to normalized blood glucose and insulin levels. These findings indicated that punicalagin might protect against the development of insulitis in T1DM. In conclusion, punicalagin exerts a strong protective effect on the pancreas against oxidative injury and inflammation in STZ-induced experimental T1DM. The present results recommend punicalagin as a potential adjuvant for reducing diabetes-associated insulitis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratas , Animales , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Experimental/metabolismo , Estrés Oxidativo , Estreptozocina/efectos adversos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glucemia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Insulina/metabolismo
4.
Mol Biol Rep ; 49(6): 4659-4671, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35305227

RESUMEN

BACKGROUND: Plant-derived phytochemicals have been reported to exert anticancer activity. This study investigated the antitumor role of silymarin (Silybum marianum) (SMN) and its molecular targets in Ehrlich solid tumor xenografts in vivo. METHODS AND RESULTS: Female Swiss albino mice were divided into three groups (of five animals each) that were engrafted with Ehrlich tumor (ET) cells with or without SMN treatment. The 3rd groups treated with DMSO only vehicle control group. A significant reduction in animal body mass and tumor volume/weight were observed in xenografted mice treated with SMN. SMN modulated oxidative stress in tumors while enhancing the antioxidant levels in mouse serum. SMN activated both mitochondrial and death receptor-related apoptosis pathways and induced cell cycle arrest, marked by a significant downregulation of cyclin D1 in SMN-treated tumors. Significant decreases in RNA content and protein expression levels of Ki-67 and proliferating cell nuclear antigen were observed in ET cells. Additionally, SMN downregulated vascular endothelial growth factor and nuclear factor-kappa B levels indicating anti-angiogenesis activity of this agent. SMN upregulated the expression of E-cadherin in tumor tissue suggesting, that SMN has potential ability to inhibit metastasis. Tumor tissue from SMN-treated animals showed a remarkable degeneration and reduction in the neoplastic cell density. CONCLUSIONS: The anticancer effect was associated with apparent apoptosis in neoplastic cells with abundance of multifocal necrotic areas. SMN was found to inhibit ET growth via enhancing apoptosis, inhibition of cell division and reduction in angiogenesis in vivo. Hypothetical scheme of SMN antitumor effects (mechanism of signaling) in solid ET in vivo. SMN anticancer effect may be mediated by molecular mediators that affect proliferation, cell cycle activity, apoptotic pathways, angiogenesis, and metastasis.


Asunto(s)
Neoplasias , Silimarina , Animales , Apoptosis , División Celular , Proliferación Celular , Femenino , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Silimarina/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Biol Res ; 55(1): 33, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333811

RESUMEN

BACKGROUND: Ionizing radiations (IR) have widespread useful applications in our daily life; however, they have unfavorable effects on reproductive health. Maintaining testicular health following IR exposure is an important requirement for reproductive potential. The current study explored the role of melatonin (MLT) in mitigating IR-induced injury in young adult rat testis. METHODS: Rats were given daily MLT (25 mg/kg) for 3 and 14 days after receiving 4 Gy γ-radiation. RESULTS: Serum MLT levels and other antioxidants, including glutathione content, and the activity of glutathione peroxidase and glutathione reductase in the testis of the irradiated rats were remarkably maintained by MLT administration in irradiated rats. Hence, the hydrogen peroxide level declined with remarkably reduced formation of oxidative stress markers, 4-hydroxynonenal, and 8-Hydroxy-2'-deoxyguanosine in the testis of irradiated animals after MLT administration. The redox status improvement caused a remarkable regression of proapoptotic protein (p53, Cyto-c, and caspase-3) in the testis and improved inflammatory cytokines (CRP and IL-6), and anti-inflammatory cytokine (interleukin IL-10) in serum. This is associated with restoration of disturbed sex hormonal balance, androgen receptor upregulation, and testicular cell proliferation activity in irradiated rats, explaining the improvement of sperm parameters (count, motility, viability, and deformation). Consequently, spermatogenic cell depletion and decreased seminiferous tubule diameter and perimeter were attenuated by MLT treatment post irradiation. Moreover, the testis of irradiated-MLT-treated rats showed well-organized histological architecture and normal sperm morphology. CONCLUSIONS: These results show that radiation-induced testicular injury is mitigated following IR exposure through synergistic interdependence between the antioxidant, anti-inflammatory, anti-apoptotic, and anti-DNA damage actions of MLT.


Asunto(s)
Melatonina , Masculino , Ratas , Animales , Melatonina/farmacología , Testículo/metabolismo , Semen/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Radiación Ionizante , Estrés Oxidativo , Antiinflamatorios/farmacología
6.
Phytother Res ; 35(6): 2879-2889, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33354848

RESUMEN

The newly emerging severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) is a dangerous pathogen that causes global health problems. It causes a disease called coronavirus disease 2019 (COVID-19) with high morbidity and mortality rates. In SARS-Cov-2-infected patients, elevated oxidative stress and upsurge of inflammatory cytokines are the main pathophysiological events that contribute to the severity and progression of symptoms and death. The polyphenols are natural compounds abundant in fruits and vegetables that are characterized by their high antioxidant and anti-inflammatory effects. Polyphenols have potential as an intervention for preventing respiratory virus infection. The beneficial effects of polyphenols on COVID-19 might be due to multiple mechanisms. Polyphenols can strengthen the body's anti-inflammatory and antioxidant defenses against viral infection. Targeting virus proteins and/or blocking cellular receptors are other plausible antiviral approaches to prevent the entry of the virus and its replication in the host cells. The results on the antiviral effects of various polyphenols, especially on SARS-CoV-2, are promising. The aim of this review is to clarify the role of polyphenols in strengthening antioxidant defenses and upregulating the immune systems of COVID-19 patients and to prevent replication and spreading of the virus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Estrés Oxidativo/efectos de los fármacos , Polifenoles/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Citocinas/metabolismo , Humanos , SARS-CoV-2/efectos de los fármacos
7.
Metab Brain Dis ; 35(2): 385-399, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31728888

RESUMEN

The present study evaluated the neuroprotective and antiepileptic efficacy of ellagic acid (EA) encapsulated in calcium-alginate nanoparticles (Ca2+-ALG NPs) in pentylenetetrazol (PTZ)-induced seizures in male mice. EA was encapsulated in ALG NPs using a nanospray drying method followed by ionotropic crosslinking with Ca2+. Characterization of the developed Ca2+-crosslinked EA-ALG NPs showed spherical, high stability NPs; successful loading of EA within crosslinked ALG NPs; and sustained release of EA. Male Swiss albino mice were divided into ten groups as follows; Group I- (control), Group II (50 mg EA /kg) - (EA), Group III polyethylene glycol (PEG), Group IV EA NPs (50 mg/kg) - (EA NP), Group (50 mg/kg alginate) V void V NPs - (void NPs), Group VI: (37.5 PTZ mg/kg) -(PTZ), Group VII: PTZ and EA - (PTZ-EA). Group VIII: animals received PTZ and PEG concurrently (PTZ-PEG). Group IX; animals received PTZ and void NPs concurrently - (PTZ-void). Group X: animals received PTZ and EA NPs concurrently (PTZ-EA NPs). PTZ was used to induce experimental epilepsy. Ca2+-ALG NPs prevented seizures throughout the experimental period and had a more prominent effect than free EA did. Ca2+-ALG NPs prevented increased glutamate, decreased GABA concentrations and ameliorated increased amyloid-ß and homocysteine levels in the serum and brain. Ca2+-EA-ALG NPs were superior to free EA in improving increased IL-6 and TNF-α. Ca2+-ALG NPs ameliorated PTZ-induced oxidative stress, as evidenced by decreased 4HNE levels and enhanced GSH, GR and GPx levels in the brain. These changes were accompanied by amelioration of apoptosis and its regulating proteins, including Cytochrome C, P53, Bax, Bcl2 and caspase-3 and caspase-9, and protected against DNA damage. Histological examination of the hippocampus confirmed that the neuroprotective effect of Ca2+-EA-ALG NPs was superior and more effective than that of free EA.


Asunto(s)
Encéfalo/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Ácido Elágico/administración & dosificación , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Convulsiones/prevención & control , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Encéfalo/metabolismo , Citocinas/metabolismo , Ácido Elágico/síntesis química , Masculino , Ratones , Nanopartículas/química , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/síntesis química , Estrés Oxidativo/fisiología , Pentilenotetrazol/toxicidad , Distribución Aleatoria , Convulsiones/inducido químicamente , Convulsiones/metabolismo
8.
J Pineal Res ; 67(2): e12585, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31066091

RESUMEN

The current work estimated the antitumour efficacy of melatonin (MLT) on the growth of Ehrlich ascites carcinoma cells inoculated intramuscularly into the hind limbs of female BALB/c mice and to compare its effects with those of adriamycin (ADR). After solid tumours developed, the animals were divided into the three following groups: the tumour-bearing control, MLT-treated (20 mg/kg body weight) and ADR-treated (10 mg/kg body weight) groups. The results showed a significant reduction in the tumour masses of the treated animals in comparison with those of the control group. There were a significant decrease in the malondialdehyde level and a significant elevation of the glutathione concentration and the superoxide dismutase and catalase activities in the MLT and ADR groups. The current study indicated the increased expression levels of P53, caspase-3 and caspase-9 and the decreased expression levels of the rRNA and Bcl2. The MLT and ADR treatments resulted in histological changes, such as a marked degenerative area, the necrosis of neoplastic cells, the appearance of different forms of apoptotic cells and giant cells with condensed chromatin, and a deeply eosinophilic cytoplasm. The MLT and ADR treatments also significantly decreased the Ki-67 protein and vascular endothelial growth factor (VEGF) expression levels in the tumour masses. In conclusion, similar to ADR-treated tumour-bearing mice, MLT suppressed the growth and proliferation of tumour by inducing apoptosis and by inhibiting tumour vascularization. The current data recommend MLT as a safe natural chemotherapeutic adjuvant to overcome cancer progression after a clinical trial validates these results.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Ehrlich/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Melatonina/farmacología , Animales , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Doxorrubicina/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/metabolismo
10.
Toxicol Ind Health ; 32(9): 1537-49, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25537623

RESUMEN

Epidemiological reports have indicated a correlation between the increasing bisphenol A (BPA) levels in the environment and the incidence of male infertility. In this study, the protective effects of melatonin on BPA-induced oxidative stress and apoptosis were investigated in the rat testes and epididymal sperm. Melatonin (10 mg/kg body weight (bw)) was injected concurrently with BPA (50 mg/kg bw) for 3 and 6 weeks. The administration of BPA significantly increased oxidative stress in the testes and epididymal sperm. This was associated with a decrease in the serum testosterone level as well as sperm quality, chromatin condensation/de-condensation level, and the percentage of haploid germ cells in the semen. BPA administration caused a significant increase in apoptosis accompanied by a decrease in the expression of the antiapoptotic proteins Bcl-2 in the testes and epididymal sperm. The concurrent administration of melatonin decreased oxidative stress by modulating the levels of glutathione, superoxide dismutase, and catalase as well as the malondialdehyde and hydrogen peroxide concentrations in the testes and sperm. Melatonin sustained Bcl-2 expression and controlled apoptosis. Furthermore, melatonin maintained the testosterone levels, ameliorated histopathological changes, increased the percentages of seminal haploid germ cells, and protected sperm chromatin condensation process, indicating appropriate spermatogenesis with production of functional sperm. In conclusion, melatonin protected against BPA-induced apoptosis by controlling Bcl-2 expression and ameliorating oxidative stress in the testes and sperm. Thus, melatonin is a promising pharmacological agent for preventing the potential reproductive toxicity of BPA following occupational or environmental exposures.


Asunto(s)
Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Suplementos Dietéticos , Disruptores Endocrinos/toxicidad , Melatonina/uso terapéutico , Fenoles/toxicidad , Testículo/efectos de los fármacos , Animales , Compuestos de Bencidrilo/antagonistas & inhibidores , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Disruptores Endocrinos/química , Contaminantes Ambientales/antagonistas & inhibidores , Contaminantes Ambientales/toxicidad , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Epidídimo/patología , Infertilidad Masculina/sangre , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/metabolismo , Infertilidad Masculina/prevención & control , Masculino , Estrés Oxidativo/efectos de los fármacos , Fenoles/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/agonistas , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Análisis de Semen , Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Espermatogonias/patología , Testículo/metabolismo , Testículo/patología , Testosterona/sangre , Testosterona/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/patología
11.
J Exp Zool A Ecol Integr Physiol ; 341(6): 672-682, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38591238

RESUMEN

Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G0/G1 phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.


Asunto(s)
Carcinoma de Ehrlich , Ratones Endogámicos BALB C , Estrés Oxidativo , Selenio , Animales , Femenino , Ratones , Selenio/farmacología , Selenio/administración & dosificación , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/patología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Citocinas/metabolismo
12.
J Exp Zool A Ecol Integr Physiol ; 339(8): 777-787, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395484

RESUMEN

The utility of 5-fluorouracil (5-FU) as a successful chemotherapeutic drug for several cancers is limited by the induction of kidney injury and dysfunction due to redox imbalance, inflammation, and apoptosis. Meanwhile, melatonin (MLT) is a potent antioxidant and anti-inflammatory natural compound with a wide safety range. The current study aimed to investigate MLT's protective effect against 5-FU-induced kidney impairment. Male mice were given multiple doses of 5-FU at 25 and 100 mg/kg, as well as MLT at 20 mg/kg. MLT treatment alleviated the toxic effect of 5-FU by normalizing blood urea and creatinine levels and preserving the histological structure, indicating MLT's nephroprotective ability. This is accompanied by body weight maintenance, an increase in survival percentage, and preserved hematological parameters in comparison to the 5-FU-treated mice. MLT's renoprotective effect was explained by improvements in C-reactive protein, IL-6, and caspase-3 in kidney tissue, indicating MLT's anti-inflammatory and antiapoptotic ability. Furthermore, MLT inhibited 5-FU-induced lipid peroxidation by maintaining the activity of superoxide dismutase and catalase, as well as glutathione levels in kidney tissue from mice treated with both doses of 5-FU. The current findings show that MLT has a novel protective effect against 5-FU-induced renal injury and renal impairment.


Asunto(s)
Melatonina , Ratones , Masculino , Animales , Melatonina/farmacología , Fluorouracilo/toxicidad , Fluorouracilo/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Riñón , Antiinflamatorios/farmacología
13.
Med Oncol ; 40(7): 189, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233859

RESUMEN

One of the most common cancers that result in death is lung cancer. There is new hope in the fight against lung cancer thanks to the chemopreventive properties of natural dietary substances like ß-caryophyllene oxide (CPO), and research is currently being done to test this theory. CPO, a sesquiterpene isolated from medicinal plant essential oils, inhibits carcinogenesis and has been effective in treating many cancers. This study examined how CPO affected proliferation of human lung cancer A549 cells. CPO was found to have an inhibitory concentration (IC50) of 124.1 g/ml. The proliferative markers Ki67 and PCNA were significantly inhibited after cells were treated with CPO at a concentration of 50 g/ml compared to controls. CPO-treated cells expressed more P21, P53, and DNA strand breaks than controls. This was accompanied by a significant cell cycle arrest in the S and G2/M phases. In treated A549 cells, this was also associated with a significant induction of apoptosis, as shown by the upregulation of the expression of caspases 3, 7, and 9, as well as Bax, and the downregulation of Bcl-2. Furthermore, the redox status of treated A549 cells revealed a marked rise in GSH and GPx activity levels and a decline in 4-HNE levels, indicating low oxidative stress following CPO treatment of A549 cells. In conclusion, cell cycle arrest and apoptosis, which are unrelated to oxidative stress, were the mechanisms by which CPO reduced cancer lung cell growth. This finding might be a potential therapeutic target for the treatment of lung cancer. Hypothetical scheme of CPO anticancer effects (mechanism of signaling) in A549 cells; in vitro. CPO treatment increases expression of p21, p53 and DNA fragmentation. These events cause arrest of cell cycle which was associated with significant induction in apoptosis via increase expression of caspases (-3,-7,-9), and Bax and downregulation of Bcl-2.


Asunto(s)
Neoplasias Pulmonares , Proteína p53 Supresora de Tumor , Humanos , Células A549 , Proteína X Asociada a bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , División Celular , Caspasas/metabolismo , Caspasas/farmacología , Caspasas/uso terapéutico , Proliferación Celular
14.
Ecotoxicol Environ Saf ; 81: 76-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22560493

RESUMEN

The protective effect of α-lipoic acid (LA) (50 mg/kg bw) against 4-tert-octylphenol (OP) (50 mg/kg bw) induced reproductive toxicity in male rats was studied. LA was injected 1h prior to OP administration three times a week. OP caused significant increase in oxidative stress in hypothalamus and epididymal sperm, disturbed hormonal levels in serum, decreased sperm quality, increased DNA fragmentation and loss of 35 and 95 kDa proteins in sperm, as well as elevated proliferating index in testis. LA protected against oxidative stress through promoting the levels of glutathione and glutathione-S-transferase in hypothalamus and sperm. In addition, LA prevented the decrease in testosterone, dehydroepiandrosterone sulfate, 3ß-hydroxysteroid dehydrogenase, and inhibited the elevations in sex-hormone-binding globulin levels and showed normal sperm quality. LA modulated proliferation of germ cell, protected against DNA fragmentation and maintained membrane protein organization in the sperm. In conclusion, LA normalized oxidative stress and protected testosterone synthesis pathway across hypothalamus-testicular axis and sperm quality indicating its defensive influence against OP-induced oxidative reproductive dysfunction in male rats.


Asunto(s)
Antioxidantes/farmacología , Fenoles/toxicidad , Reproducción/efectos de los fármacos , Tensoactivos/toxicidad , Ácido Tióctico/farmacología , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Vías Secretoras/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Enfermedades Testiculares/inducido químicamente , Enfermedades Testiculares/etiología , Enfermedades Testiculares/prevención & control , Testículo/efectos de los fármacos , Testículo/metabolismo , Testosterona/metabolismo
15.
Environ Sci Pollut Res Int ; 29(60): 91127-91138, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35881285

RESUMEN

Liver damage and fibrosis are serious health problems without effective treatment. Proanthocyanidins (PAs) are flavonoids with several biological effects. We investigated the potential anti-fibrotic effect of proanthocyanidins on carbon tetrachloride (CCl4)-induced liver injury and fibrosis. Liver fibrosis was induced by oral administration of CCl4 three times a week for 5 and 9 weeks. PAs were daily administered in a dose of 500 mg/kg bw. Animals were divided into five groups: control groups, olive oil-treated group, Pas-treated group, CCl4-treated animals, and PAs + CCl4-treated rats. CCl4 and PAs were administered by gavage. Administration of CCl4 caused a significant elevation in alanine aminotransferase and aspartate aminotransferase activities, the concentration of alpha-2-macroglobulin, and bilirubin concentration. In addition, the protein and apolipoprotein contents were significantly decreased in the serum of CCl4-treated rats. These results were accompanied by histopathological alterations and increased inflammation, apoptosis, and DNA damage. Treatment with PAs caused remarkable regression of fibrosis and alpha-2-macroglobulin with improvement in histological characteristics of the liver after 5 and 9 weeks of intoxication. PAs could also maintain redox balance, evidenced by the prevention of lipid peroxidation and mitigation of the decrease in antioxidants. Treatment of intoxicated rats with PAs resulted in a significant decline in pro-inflammatory cytokines, including IL-6, IL-1ß, and TNF-α in serum. This is associated with a remarkable decrease in apoptosis of hepatic cells shown by decreased levels of Bax, caspase-3, and -9, with increased Bcl-2. The protective effect of PAs was also evident by protecting DNA integrity in the intoxicated rats. PAs suppressed hepatic fibrosis, improved liver function and structure via modulating the interdependence between oxidative stress, inflammation, apoptosis, and DNA integrity in CCl4-treated rats.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cirrosis Hepática , Proantocianidinas , Animales , Ratas , Administración Oral , Proantocianidinas/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Citocinas/sangre , Estrés Oxidativo
16.
Neurotox Res ; 40(6): 2103-2116, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36394770

RESUMEN

Brain injury and cognitive impairment are major health issues associated with neurodegenerative diseases in young and aged persons worldwide. Epigallocatechin-3-gallate (EGCG) was studied for its ability to protect against methionine (Met)-induced brain damage and cognitive dysfunction. Male mice were given Met-supplemented in drinking water to produce hyperhomocysteinemia (HHcy)-induced animals. EGCG was administered daily concurrently with Met by gavage. EGCG attenuated the rise in homocysteine levels in the plasma and the formation of amyloid-ß and tau protein in the brain. Cognitive and memory impairment in HHcy-induced mice were significantly improved by EGCG administration. These results were associated with improvement in glutamate and gamma-aminobutyric acid levels in the brain. EGCG maintained the levels of glutathione and the activity of antioxidant enzymes in the brain. As a result of the reduction of oxidative stress, EGCG protected against DNA damage in Met-treated mice. Moreover, maintaining the redox balance significantly ameliorated neuroinflammation evidenced by the normalization of IL-1ß, IL-6, tumor necrosis factor α, C-reactive protein, and IL-13 in the same animals. The decreases in both oxidative stress and inflammatory cytokines were significantly associated with upregulation of the antiapoptotic Bcl-2 protein and downregulation of the proapoptotic protein Bax, caspases 3 and 9, and p53 compared with Met-treated animals, indicating a diminution of neuronal apoptosis. These effects reflect and explain the improvement in histopathological alterations in the hippocampus of Met-treated mice. In conclusion, the beneficial effects of EGCG may be due to interconnecting pathways, including modulation of redox balance, amelioration of inflammation, and regulation of antiapoptotic proteins.


Asunto(s)
Lesiones Encefálicas , Catequina , Hiperhomocisteinemia , Ratones , Masculino , Animales , Metionina/farmacología , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/tratamiento farmacológico , Estrés Oxidativo , Cognición , Proteínas Reguladoras de la Apoptosis , Catequina/farmacología , Catequina/uso terapéutico , Racemetionina/farmacología
17.
Heliyon ; 8(3): e09047, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35299600

RESUMEN

Thymax is a gross thymic extract that has been shown to induce apoptosis in vitro for human breast cancer cells. Here we examine Thymax's ability to induce apoptosis in animals bearing Ehrlich ascites carcinoma (EAC). Thymax was administered six days/week orally to mice (5.45 mg/kg body weight) beginning either 14 days prior to EAC inoculation or 9 days post inoculation; treatment continued for 30 days post inoculation. Pretreatment of mice with Thymax markedly delayed tumor growth and reduced tumor incidence by 38.9%, and tumor volumes relative to untreated controls were suppressed by 90.5% and 55.0% for pre- and post-inoculation groups, respectively. Treatment with Thymax inhibited cellular proliferation by decreasing the expression of tumor markers Ki-67, PCNA, and Cyclin D1 in cancer cells and increasing the expression of p21 and p27. This was associated with the ability of Thymax to arrest the cell cycle of EAC cells in the G0/G1 phase and to induce apoptosis, as indicated by a significant increase in the sub-G1 phase's percentage of hypodiploid cells and further affirmed by DNA fragmentation and Annexin V/propidium iodide staining. In addition, Thymax exerted its apoptotic effect in EAC cancer cells through a mitochondrial-dependent pathway, as evidenced by an increased Bax/Bcl-2 ratio, up-regulation of p53 expression, and activation of caspase-3. We conclude that Thymax supplementation enhances tumor cell demise by arresting the cell cycle and inducing apoptosis. These data suggest that Thymax could be a new adjuvant for breast cancer treatment.

18.
Heliyon ; 8(1): e08837, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35141433

RESUMEN

CONTEXT: Chemotherapy is a cornerstone in the treatment of hepatocellular carcinoma (HCC). Melatonin is a pineal hormone that targets various cancers, however, its antitumor pathways are still not fully elucidated. OBJECTIVE: This study investigated melatonin's antitumor molecular mechanisms to inhibit the proliferation of HepG2 cells. MATERIALS AND METHODS: HepG2 Cells were classified into cells without treatment as a control group and cells treated with melatonin (5.4 mmol/L) for 48 h. Proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 were estimated using immunohistochemical analysis. Apoptosis and cell cycle were evaluated using flow cytometric analysis. Apoptotic markers were detected using RT-qPCR assay. Antioxidants and oxidative stress biomarkers were performed using a colorimetric assay. RESULTS: Melatonin produced a remarkable steady decrease in the viability of HepG2 cells at a concentration range between 5-20 mmol/L. Melatonin suppressed cell proliferation in the G2/M phase of the cell cycle (34.97 ± 0.92%) and induced apoptosis (12.43 ± 0.73%) through up-regulating p21 and p53 that was confirmed by the reduction of PCNA and Ki-67 expressions. Additionally, melatonin repressed angiogenesis evidenced by the down-regulation of angiopoietin-2, vascular endothelial growth factor receptor-2 expressions (0.42-fold change), and the level of CD133. Moreover, melatonin augmented the oxidative stress manifested by a marked increase of 4-hydroxynonenal levels with a reduction of glutathione content and superoxide dismutase activity. DISCUSSION AND CONCLUSION: Melatonin inhibits proliferation and angiogenesis and induced apoptosis and oxidative stress in HepG2 cells. These results indicate the oncostatic effectiveness of melatonin on liver cancer.

19.
Environ Sci Pollut Res Int ; 29(40): 60371-60384, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35419691

RESUMEN

Exposure to light at night, pineal gland impairment, and the environmental pollutant trichloroethylene (TCE) have serious implications for health and contribute to illness, including liver cancer. The adverse effect of the association of continuous exposure to light with decreased melatonin levels and TCE-induced toxicity is not disclosed in target organs. This work explored the role of light and pineal impairment in increasing susceptibility to liver toxicity and cancer upon exposure to TCE. Male albino mice were divided into groups as follows: control group (12-h light/12-h dark cycle), constant light (24-h light), pinealectomized (Pnx) mice, sham surgically treated group, TCE-treated groups subjected to two doses (500 and 1000 mg/kg) at two different light regimens, and combination of Pnx and TCE-treated mice kept at a 12-h light/12-h dark cycle. Melatonin levels were significantly decreased in both Pnx mice and TCE-treated animals at both light regimens. Aspartate transaminase, alanine aminotransferase, activities, and serum bilirubin levels were significantly elevated, whereas albumin levels were markedly decreased in Pnx mice, TCE-treated mice, and the combination group. Histopathological investigations reflected changes in liver function parameters indicating liver injury and induction of cancer. These effects were accompanied by significant increase of the liver cancer biomarker alpha-fetoprotein and the expression of the metastatic markers CD44, TGFß-1, and VEGF, along with increased oxidative stress indicators and inflammatory cytokines (IL-6, IL-1ß, and TNF-α) in both Pnx and TCE-treated mice and the combination group at both light regimens. Taken together, our findings indicated that low melatonin levels, exposure to constant light, and the combination of both factors increases susceptibility to the toxic and carcinogenic effects of TCE on the liver.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Neoplasias Hepáticas , Melatonina , Glándula Pineal , Tricloroetileno , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado , Masculino , Melatonina/metabolismo , Ratones , Glándula Pineal/metabolismo , Pinealectomía , Solventes/farmacología , Tricloroetileno/metabolismo , Tricloroetileno/toxicidad
20.
Heliyon ; 7(3): e06474, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33748504

RESUMEN

Cardiomyopathy and pancreatic injury are health issues associated with type 2 diabetes mellitus (T2DM) and are characterized by elevated oxidative stress, inflammation and apoptosis. Melatonin (MLT) is a hormone with multifunctional antioxidant activity. The protective effects of MLT on the heart and pancreas during the early development of diabetic cardiomyopathy and pancreatic injury were investigated in male Wistar rats with T2DM. MLT (10 mg/kg) was administered daily by gavage for 15 days after diabetic induction. Treatment of diabetic rats with MLT significantly normalized the levels of serum glucose, HbA1-c, and the lipid profile and improved the insulin levels and insulin resistance compared with diabetic rats, affirming its antidiabetic effect. MLT significantly prevented the development of oxidative stress and sustained the levels of glutathione and glutathione peroxidase activity in the heart and pancreas of diabetic animals, indicating its antioxidant capacity. Additionally, MLT prevented the increase in proinflammatory cytokines and expression of Bax, caspase-3 and P53. Furthermore, MLT enhanced the anti-inflammatory cytokine IL-10 and antiapoptotic protein Bcl-2. MLT controlled the levels of troponin T and creatine kinase-MB and lactate dehydrogenase activity, indicating its anti-inflammatory and antiapoptotic effects. Histological examinations confirmed the protective effects of MLT on T2DM-induced injury in the myocardium, pancreas and islets of Langerhans. In conclusion, the protective effects of melatonin on the heart and pancreas during the early development of T2DM are attributed to its antihyperglycemic, antilipidemic and antioxidant influences as well as its remarkable anti-inflammatory and antiapoptotic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA