Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 114(8): 3433-3445, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37302818

RESUMEN

Classic Hodgkin lymphoma (cHL) is characterized by multinucleated cells called Reed-Sternberg (RS) cells and genetic complexity. Although CD30 also characterizes cHL cells, its biological roles are not fully understood. In this report, we examined the link between CD30 and these characteristics of cHL cells. CD30 stimulation increased multinucleated cells resembling RS cells. We found chromatin bridges, a cause of mitotic errors, among the nuclei of multinucleated cells. CD30 stimulation induced DNA double-strand breaks (DSBs) and chromosomal imbalances. RNA sequencing showed significant changes in the gene expression by CD30 stimulation. We found that CD30 stimulation increased intracellular reactive oxygen species (ROS), which induced DSBs and multinucleated cells with chromatin bridges. The PI3K pathway was responsible for CD30-mediated generation of multinucleated cells by ROS. These results suggest that CD30 involves generation of RS cell-like multinucleated cells and chromosomal instability through induction of DSBs by ROS, which subsequently induces chromatin bridges and mitotic error. The results link CD30 not only to the morphological features of cHL cells, but also to the genetic complexity, both of which are characteristic of cHL cells.


Asunto(s)
Enfermedad de Hodgkin , Células de Reed-Sternberg , Humanos , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Enfermedad de Hodgkin/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular , Inestabilidad Cromosómica/genética , Cromatina/genética , Cromatina/metabolismo , Antígeno Ki-1/genética , Antígeno Ki-1/metabolismo
2.
J Autoimmun ; 139: 103085, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354689

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by genetic heterogeneity and an interferon (IFN) signature. The overall landscapes of the heritability of SLE remains unclear. OBJECTIVES: To identify and elucidate the biological functions of rare variants underlying SLE, we conducted analyses of patient-derived induced pluripotent stem cells (iPSCs) in combination with genetic analysis. METHODS: Two familial SLE patient- and two healthy donor (HD)-derived iPSCs were established. Type 1 IFN-secreting dendritic cells (DCs) were differentiated from iPSCs. Genetic analyses of SLE-iPSCs, and 117 SLE patients and 107 HDs in the ImmuNexUT database were performed independently. Genome editing of the variants on iPSCs was performed with the CRISPR/Cas9 system. RESULTS: Type 1 IFN secretion was significantly increased in DCs differentiated from SLE-iPSCs compared to HD-iPSCs. Genetic analyses revealed a rare variant in the 2'-5'-Oligoadenylate Synthetase Like (OASL) shared between SLE-iPSCs and another independent SLE patient, and significant accumulation of OASL variants among SLE patients (HD 0.93%, SLE 6.84%, OR 8.387) in the database. Genome editing of mutated OASL 202Q to wild-type 202 R or wild-type OASL 202 R to mutated 202Q resulted in reduced or enhanced Type 1 IFN secretion of DCs. Three other OASL variants (R60W, T261S and A447V) accumulated in SLE patients had also capacities to enhance Type 1 IFN secretion in response to dsRNA. CONCLUSIONS: We established a patient-derived iPSC-based strategy to investigate the linkage of genotype and phenotype in autoimmune diseases. Detailed case-based investigations using patient-derived iPSCs provide information to unveil the heritability of the pathogenesis of autoimmune diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lupus Eritematoso Sistémico , Humanos , Interferones , Nucleótidos de Adenina , Lupus Eritematoso Sistémico/genética
3.
Transfusion ; 63(3): 463-469, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597800

RESUMEN

BACKGROUND: Flow cytometry (FC) has proven its utility in scrutinizing AB antigen expression in red blood cells (RBCs), cooperating with serological tests for accurate blood group typing. However, technical difficulties may impair the characterization of weak ABO subtypes when background noises appear at non-negligible levels. STUDY DESIGN AND METHODS: We sought to establish an FC method that could prevent antibody-induced hemagglutination and an increase in cellular autofluorescence, two major issues inherent to RBC-FC analysis of AB expression. We optimized fixatives, multicolor-staining protocols, and sequential gating strategies. Blood samples from weak ABO subtype cases, Bm and Ael , were analyzed with the established protocol. RESULTS: The optimized mixture of glutaraldehyde and formaldehyde successfully generated fixed RBCs resistant to agglutination while maintaining low autofluorescence. These features allowed co-staining of leukocyte- and erythrocyte-markers, which enabled sequential gating strategies facilitating the precise AB antigen analysis in purely single RBCs with minimum background noises. By the established FC analysis, we could detect in the Bm sample a small RBC population exhibiting weak B antigen expression. The assay also proved it feasible to identify a small population (0.04%) of RBCs weakly expressing the A antigen in the Ael sample confirmed as harboring a rare c.816dupG ABO variant allele. CONCLUSION: The RBC-FC analysis described here allows the detection of AB antigens weakly expressed in RBCs while achieving minimum background noise levels in negative control samples. Overall, the modified protocol provides a quick and reliable assay valuable in transfusion medicine and is potentially applicable to the characterization of rare weak ABO variants.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Eritrocitos , Humanos , Citometría de Flujo/métodos , Eritrocitos/metabolismo , Anticuerpos/metabolismo , Tipificación y Pruebas Cruzadas Sanguíneas , Antígenos/metabolismo
4.
Stem Cells ; 35(4): 989-1002, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27753160

RESUMEN

Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002.


Asunto(s)
Citoprotección , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcisteína/farmacología , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/patología , Microambiente Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Indicadores y Reactivos , Inflamación/patología , Ratones Endogámicos C57BL , Factores de Tiempo
5.
Nature ; 478(7367): 64-9, 2011 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-21909114

RESUMEN

Myelodysplastic syndromes and related disorders (myelodysplasia) are a heterogeneous group of myeloid neoplasms showing deregulated blood cell production with evidence of myeloid dysplasia and a predisposition to acute myeloid leukaemia, whose pathogenesis is only incompletely understood. Here we report whole-exome sequencing of 29 myelodysplasia specimens, which unexpectedly revealed novel pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large series analysis, these splicing pathway mutations were frequent (∼45 to ∼85%) in, and highly specific to, myeloid neoplasms showing features of myelodysplasia. Conspicuously, most of the mutations, which occurred in a mutually exclusive manner, affected genes involved in the 3'-splice site recognition during pre-mRNA processing, inducing abnormal RNA splicing and compromised haematopoiesis. Our results provide the first evidence indicating that genetic alterations of the major splicing components could be involved in human pathogenesis, also implicating a novel therapeutic possibility for myelodysplasia.


Asunto(s)
Mutación/genética , Síndromes Mielodisplásicos/genética , Empalme del ARN/genética , Empalme Alternativo/genética , Exoma/genética , Hematopoyesis/genética , Humanos , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Empalme de ARN/genética , Ribonucleoproteínas/genética , Empalmosomas/genética , Factor de Empalme U2AF
6.
Glia ; 64(11): 2005-24, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27459098

RESUMEN

Neurodegeneration has been shown to induce microglial activation and the infiltration of monocyte-derived macrophages into the CNS, resulting in the coexistence of these two populations within the same lesion, though their distinct features remain elusive. To investigate the impact of rod photoreceptor degeneration on microglial activation, we generated a toxin-mediated genetic model of rod degeneration. Rod injury induced microglial proliferation and migration toward the photoreceptors. Bone marrow transplantation revealed the invasion of monocyte-derived macrophages into the retina, with microglia and the infiltrating macrophages showing distinct distribution patterns in the retina. By comparing the gene expression profiles of the activated microglia and infiltrating macrophages, we identified microglia-specific genes, including Ak1, Ctsf, Sall1, Phlda3, and Spns2. An analysis of Sall1gfp knock-in mice showed GFP expression in the microglia of developing and mature healthy retinas. DTA injury induced the expansion of Sall1gfp(+) microglia, whereas Ly6C(+) monocyte-derived macrophages were mostly Sall1gfp(-) , supporting the idea that Sall1 is exclusively expressed in microglia within the retinal phagocyte pool. We evaluated the contribution of microglia to the phagocyte pool in rd1 mutant retinas and found that Sall1gfp(+) microglia constituted the majority of phagocytes. A Sall1 deficiency did not affect microglial colonization of the retina and the cortex, but it did change their morphology from a ramified to a more amoeboid appearance. The morphological defects observed in Sall1-deficient microglia were not rescued by the presence of wild-type non-microglial cells, suggesting that Sall1 functions cell-autonomously in microglia. Taken together, our data indicate that Sall1 regulates microglial morphology during development. GLIA 2016;64:2005-2024.


Asunto(s)
Microglía/fisiología , Retina/citología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/fisiología , Factores de Transcripción/metabolismo , Animales , Antígenos CD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Ciclina D3/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Degeneración Retiniana/inducido químicamente , Factores de Transcripción/genética
7.
Am J Hum Genet ; 92(3): 431-8, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23434115

RESUMEN

Congenital macrothrombocytopenia (CMTP) is a heterogeneous group of rare platelet disorders characterized by a congenital reduction of platelet counts and abnormally large platelets, for which CMTP-causing mutations are only found in approximately half the cases. We herein performed whole-exome sequencing and targeted Sanger sequencing to identify mutations that cause CMTP, in which a dominant mode of transmission had been suspected but for which no known responsible mutations have been documented. In 13 Japanese CMTP-affected pedigrees, we identified six (46%) affected by ACTN1 variants cosegregating with CMTP. In the entire cohort, ACNT1 variants accounted for 5.5% of the dominant forms of CMTP cases and represented the fourth most common cause in Japanese individuals. Individuals with ACTN1 variants presented with moderate macrothrombocytopenia with anisocytosis but were either asymptomatic or had only a modest bleeding tendency. ACTN1 encodes α-actinin-1, a member of the actin-crosslinking protein superfamily that participates in the organization of the cytoskeleton. In vitro transfection experiments in Chinese hamster ovary cells demonstrated that altered α-actinin-1 disrupted the normal actin-based cytoskeletal structure. Moreover, transduction of mouse fetal liver-derived megakaryocytes with disease-associated ACTN1 variants caused a disorganized actin-based cytoskeleton in megakaryocytes, resulting in the production of abnormally large proplatelet tips, which were reduced in number. Our findings provide an insight into the pathogenesis of CMTP.


Asunto(s)
Actinina/genética , Mutación , Trombocitopenia/genética , Animales , Pueblo Asiatico/genética , Plaquetas/metabolismo , Células CHO , Cricetinae , Citoesqueleto/genética , Citoesqueleto/metabolismo , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Megacariocitos/metabolismo , Ratones , Linaje , Análisis de Secuencia de ADN/métodos , Trombocitopenia/sangre , Trombocitopenia/metabolismo
8.
Mol Genet Metab ; 119(3): 232-238, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27590924

RESUMEN

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by the deficient activity of iduronate 2-sulfatase (IDS), which is involved in the lysosomal catabolism of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. Such a deficiency leads to the accumulation of undegraded GAGs in some organs. Although enzyme replacement therapy is available as a treatment of MPS II, there are some limitations, such as the requirement of weekly administration for whole life. To avoid such limitations, hematopoietic cell transplantation (HSCT) is a possible alternative. In fact, some report suggested positive effects of HSCT for MPS II. However, HSCT has also some limitations. Strong conditioning regimens can cause severe side effects. For overcome this obstacle, we studied the efficacy of ACK2, an antibody that blocks KIT, followed by low-dose irradiation as a preconditioning regimen for HSCT using a murine model of MPS II. This protocol achieves 58.7±4.92% donor chimerism at 16weeks after transplantation in the peripheral blood of recipient mice. GAG levels were significantly reduced in liver, spleen, heart and intestine. These results indicated that ACK2-based preconditioning might be one of the choices for MPS II patients who receive HSCT.


Asunto(s)
Anticuerpos Antiidiotipos/administración & dosificación , Mucopolisacaridosis II/terapia , Proteínas Proto-Oncogénicas c-kit/inmunología , Animales , Trasplante de Médula Ósea , Dermatán Sulfato/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas/genética , Heparitina Sulfato/metabolismo , Humanos , Lisosomas/enzimología , Lisosomas/patología , Ratones , Ratones Noqueados , Mucopolisacaridosis II/inmunología , Mucopolisacaridosis II/metabolismo , Mucopolisacaridosis II/patología , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores
9.
Blood ; 123(25): 3932-42, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24825862

RESUMEN

High levels of HES1 expression are frequently found in BCR-ABL(+) chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BC-like disease; however, the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-κB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of HES1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, CMPs expressing BCR-ABL and Hes1 secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BC-like disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Crisis Blástica/genética , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Metaloproteinasa 9 de la Matriz/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Crisis Blástica/metabolismo , Trasplante de Médula Ósea/métodos , Movimiento Celular/genética , Proliferación Celular , Citometría de Flujo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Estimación de Kaplan-Meier , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Genéticos , FN-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Transcripción HES-1 , Regulación hacia Arriba
10.
J Clin Immunol ; 35(4): 384-98, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25875699

RESUMEN

OBJECTIVE: We here describe treatment outcomes in two adenosine deaminase (ADA)-deficiency patients (pt) who received stem cell gene therapy (SCGT) with no cytoreductive conditioning. As this protocol has features distinct from those of other clinical trials, its results provide insights into SCGT for ADA deficiency. PATIENTS AND METHODS: Pt 1 was treated at age 4.7 years, whereas pt 2, who had previously received T-cell gene therapy, was treated at age 13 years. Bone marrow CD34(+) cells were harvested after enzyme replacement therapy (ERT) was withdrawn; following transduction of ADA cDNA by the γ-retroviral vector GCsapM-ADA, they were administered intravenously. No cytoreductive conditioning, at present considered critical for therapeutic benefit, was given before cell infusion. Hematological/immunological reconstitution kinetics, levels of systemic detoxification, gene-marking levels, and proviral insertion sites in hematopoietic cells were assessed. RESULTS: Treatment was well tolerated, and no serious adverse events were observed. Engraftment of gene-modified repopulating cells was evidenced by the appearance and maintenance of peripheral lymphocytes expressing functional ADA. Systemic detoxification was moderately achieved, allowing temporary discontinuation of ERT for 6 and 10 years in pt 1 and pt 2, respectively. Recovery of immunity remained partial, with lymphocyte counts in pts 1 and 2, peaked at 408/mm(3) and 1248/mm(3), approximately 2 and 5 years after SCGT. Vector integration site analyses confirmed that hematopoiesis was reconstituted with a limited number of clones, some of which were shown to have myelo-lymphoid potential. CONCLUSIONS: Outcomes in SCGT for ADA-SCID are described in the context of a unique protocol, which used neither ERT nor cytoreductive conditioning. Although proven safe, immune reconstitution was partial and temporary. Our results reiterate the importance of cytoreductive conditioning to ensure greater benefits from SCGT.


Asunto(s)
Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Agammaglobulinemia/genética , Agammaglobulinemia/terapia , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Adenosina Desaminasa/inmunología , Adenosina Desaminasa/uso terapéutico , Adolescente , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/inmunología , Edad de Inicio , Diferenciación Celular , Preescolar , Activación Enzimática , Terapia de Reemplazo Enzimático , Gammaretrovirus/genética , Expresión Génica , Vectores Genéticos/genética , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunidad , Inmunofenotipificación , Lactante , Recién Nacido , Japón , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Mutación , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/inmunología , Transducción Genética , Transgenes , Resultado del Tratamiento
11.
Stem Cells ; 32(7): 1929-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24510783

RESUMEN

Hematopoietic cell transplantation has proven beneficial for various intractable diseases, but it remains unclear how hematopoietic stem/progenitor cells (HSPCs) home to the bone marrow (BM) microenvironment, initiate hematopoietic reconstitution, and maintain life-long hematopoiesis. The use of newly elucidated molecular determinants for overall HSPC engraftment should benefit patients. Here, we report that modification of C-X-C chemokine receptor type 4 (Cxcr4) signaling in murine HSPCs does not significantly affect initial homing/lodging events, but leads to alteration in subsequent BM repopulation kinetics, with observations confirmed by both gain- and loss-of-function approaches. By using C-terminal truncated Cxcr4 as a gain-of-function effector, we demonstrated that signal augmentation likely led to favorable in vivo repopulation of primitive cell populations in BM. These improved features were correlated with enhanced seeding efficiencies in stromal cell cocultures and altered ligand-mediated phosphorylation kinetics of extracellular signal-regulated kinases observed in Cxcr4 signal-augmented HSPCs in vitro. Unexpectedly, however, sustained signal enhancement even with wild-type Cxcr4 overexpression resulted in impaired peripheral blood (PB) reconstitution, most likely by preventing release of donor hematopoietic cells from the marrow environment. We thus conclude that timely regulation of Cxcr4/CXCR4 signaling is key in providing donor HSPCs with enhanced repopulation potential following transplantation, whilst preserving the ability to release HSPC progeny into PB for improved transplantation outcomes.


Asunto(s)
Médula Ósea/fisiopatología , Células Madre Hematopoyéticas/fisiología , Receptores CXCR4/metabolismo , Animales , Enfermedades de la Médula Ósea/terapia , Movimiento Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Trasplante de Células Madre Hematopoyéticas , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Procesamiento Proteico-Postraduccional , Regeneración , Transducción de Señal
12.
J Inherit Metab Dis ; 38(2): 333-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25503568

RESUMEN

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficient activity of the iduronate-2-sulfatase. This leads to accumulation of glycosaminoglycans (GAGs) in the lysosomes of various cells. Although it has been proposed that bone marrow transplantation (BMT) may have a beneficial effect for patients with MPS II, the requirement for donor-cell chimerism to reduce GAG levels is unknown. To address this issue, we transplanted various ratios of normal and MPS II bone marrow cells in a mouse model of MPS II and analyzed GAG accumulation in various tissues. Chimerism of whole leukocytes and each lineage of BMT recipients' peripheral blood was similar to infusion ratios. GAGs were significantly reduced in the liver, spleen, and heart of recipients. The level of GAG reduction in these tissues depends on the percentage of normal-cell chimerism. In contrast to these tissues, a reduction in GAGs was not observed in the kidney and brain, even if 100 % donor chimerism was achieved. These observations suggest that a high degree of chimerism is necessary to achieve the maximum effect of BMT, and donor lymphocyte infusion or enzyme replacement therapy might be considered options in cases of low-level chimerism in MPS II patients.


Asunto(s)
Trasplante de Médula Ósea , Glicosaminoglicanos/metabolismo , Iduronato Sulfatasa/metabolismo , Mucopolisacaridosis II/cirugía , Quimera por Trasplante , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Iduronato Sulfatasa/genética , Hígado/enzimología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucopolisacaridosis II/enzimología , Mucopolisacaridosis II/genética , Miocardio/enzimología , Bazo/enzimología , Factores de Tiempo
13.
Nature ; 460(7257): 904-8, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19620960

RESUMEN

Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.


Asunto(s)
Genes Supresores de Tumor , Leucemia Mieloide/genética , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Desequilibrio Alélico , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Humanos Par 11/genética , Femenino , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Células 3T3 NIH , Trasplante de Neoplasias , Oncogenes/genética , Fosforilación , Conformación Proteica , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-cbl/química , Proteínas Proto-Oncogénicas c-cbl/deficiencia , Ubiquitinación , Disomía Uniparental/genética , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Rinsho Ketsueki ; 56(8): 1016-24, 2015 Aug.
Artículo en Japonés | MEDLINE | ID: mdl-26345561

RESUMEN

Gene therapy targeting hematopoietic stem cells (HSC) can now be recognized as a curative treatment option for patients with genetic disorders, including primary immunodeficiency (PID) diseases. Despite an increasing number of successfully treated cases, the therapeutic benefits still vary considerably among trials. To further optimize HSC gene therapy, it is hoped that a research model system capable of faithful recapitulation of the disease phenotypes can be established. Recently, a new model system that may meet this goal has become a reality; that is, patient-derived induced pluripotent stem cells (iPSCs). iPSCs are useful for modeling genetic disorders, because of their potential to differentiate into various types of somatic cells while retaining the specific genetic mutations. They are also susceptible to genetic manipulation in vitro, thus enabling pre-clinical assessment of candidate treatment strategies for their performance. This article introduces a proof that patient-derived iPSCs represent an invaluable tool for modelling genetic diseases such as PIDs, and also provide an indispensable research model usable for the development of ideal therapeutic modalities.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Técnicas de Transferencia de Gen , Células Madre Hematopoyéticas , Humanos
15.
Mol Genet Metab ; 112(1): 44-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24642446

RESUMEN

Pompe disease (PD), which is also called glycogen storage disease type II (GSDII), is one of the lysosomal storage diseases (LSDs) caused by a deficiency in acid-α-glucosidase (GAA) in the lysosome and is characterized by the accumulation of glycogen in various cells. PD has been treated by enzyme replacement therapy (ERT). We generated induced pluripotent stem cells (iPSCs) from the cells of patients with infantile-type and late-onset-type PD using a retrovirus vector to deliver transgenes encoding four reprogramming factors, namely, OCT4, SOX2, c-MYC, and KLF4. We confirmed that the two types of PD-iPSCs exhibited an undifferentiated state, alkaline phosphatase staining, and the presence of SSEA-4, TRA-1-60, and TRA-1-81. The PD-iPSCs exhibited strong positive staining with Periodic acid-Schiff (PAS). Moreover, ultrastructural features of these iPSCs exhibited massive glycogen granules in the cytoplasm, particularly in the infantile-type but to a lesser degree in the late-onset type. Glycogen granules of the infantile-type iPSCs treated with rhGAA were markedly decreased in a dose-dependent manner. Human induced pluripotent stem cell provides an opportunity to build up glycogen storage of Pompe disease in vitro. It represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies for Pompe disease.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Glucógeno/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , alfa-Glucosidasas/administración & dosificación , Línea Celular , Relación Dosis-Respuesta a Droga , Fibroblastos/patología , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Humanos , Factor 4 Similar a Kruppel , Modelos Biológicos , Piel/citología , alfa-Glucosidasas/farmacología
16.
Blood ; 119(26): 6234-42, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22592606

RESUMEN

Induced pluripotent stem cells (iPSCs) can be generated by the expression of defined transcription factors not only from normal tissue, but also from malignant cells. Cancer-derived iPSCs are expected to provide a novel experimental opportunity to establish the disease model. We generated iPSCs from imatinib-sensitive chronic myelogenous leukemia (CML) patient samples. Remarkably, the CML-iPSCs were resistant to imatinib although they consistently expressed BCR-ABL oncoprotein. In CML-iPSCs, the phosphorylation of ERK1/2, AKT, and JNK, which are essential for the maintenance of both BCR-ABL (+) leukemia cells and iPSCs, were unchanged after imatinib treatment, whereas the phosphorylation of signal transducer and activator of transcription (STAT)5 and CRKL was significantly decreased. These results suggest that the signaling for iPSCs maintenance compensates for the inhibition of BCR-ABL. CML-iPSC-derived hematopoietic cells recovered the sensitivity to imatinib although CD34(+)38(-)90(+)45(+) immature cells were resistant to imatinib, which recapitulated the pathophysiologic feature of the initial CML. CML-iPSCs provide us with a novel platform to investigate CML pathogenesis on the basis of patient-derived samples.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Cultivo Primario de Células/métodos , Animales , Butadienos/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Análisis por Conglomerados , Técnicas de Cocultivo , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Análisis por Micromatrices , Modelos Teóricos , Morfolinas/farmacología , Nitrilos/farmacología
17.
Blood ; 119(8): e45-56, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-22096246

RESUMEN

The mechanism by which thrombotic vessel occlusion occurs independently of plaque development or endothelial cell (EC) disruption remains unclear, largely because of an inability to visualize the formation of thrombus, especially at the single-platelet level in real time. Here we demonstrate that rapidly developing thrombi composed of discoid platelets can be induced in the mesenteric capillaries, arterioles, and large-sized arteries of living mice, enabling characterization of the kinetics of thrombosis initiation and the multicellular interrelationships during thrombus development. Platelet aggregation without EC disruption was triggered by reactive oxygen species (ROS) photochemically induced by moderate power laser irradiation. The inflammatory cytokines TNF-α and IL-1 could be key components of the EC response, acting through regulation of VWF mobilization to the cell surface. Thrombus formation was then initiated by the binding of platelet GPIbα to endothelial VWF in our model, and this effect was inhibited by the ROS scavenger N-acetylcysteine. Actin linker talin-dependent activation of alphaIIb-beta3 integrin or Rac1 in platelets was required for late-phase thrombus stability. Our novel imaging technology illustrates the molecular mechanism underlying inflammation-based thrombus formation by discoid platelets on undisrupted ECs and suggests control of ROS could be a useful therapeutic target for the prevention of thrombotic diseases.


Asunto(s)
Endotelio Vascular/metabolismo , Interleucina-1/metabolismo , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcisteína/farmacología , Animales , Plaquetas/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Citometría de Flujo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal/métodos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Trombosis/genética , Trombosis/metabolismo , Factor de Necrosis Tumoral alfa/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Factor de von Willebrand/metabolismo
18.
Hepatol Res ; 44(14): E408-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24636009

RESUMEN

AIM: Human induced pluripotent stem (hiPS) cells are an alternative cell source of regenerative medicine for liver disease. Because variations in hepatic differentiation efficacy among hiPS cells exist, it is important to select a hiPS cell line with hepatic differentiation propensity. In addition, nuclear receptors (NR) regulate essential biological processes including differentiation and development. In this study, we identified the hiPS cell line with hepatic differentiation propensity and examined expression levels of 48 NR during this process. METHODS: We screened 28 hiPS cell lines, which are established from various tissues of healthy persons with various reprogramming methods, using a three-step differentiation method, and examined expression levels of 48 NR by quantitative real-time polymerase chain reaction during the differentiation process in the selected cells. RESULTS: hiPS-RIKEN-2B and hiPS-RIKEN-2F cells have hepatic differentiation propensity. Differentiation propensity towards endoderm was affected by donor origin but not by reprogramming methods or cell type of origins. Expression levels of NR were closely associated with those of hepatic differentiation markers. Furthermore, expression patterns of NR were categorized as five patterns. In particular, seven NR such as chicken ovalbumin upstream promoter transcription factor 1, retinoic acid receptor α, peroxisome proliferator-activated receptor-γ, progesterone receptor, photoreceptor cell-specific nuclear receptor, tailless homolog orphan receptor and glucocorticoid receptor were identified as the genes of which expression gradually goes up with differentiation. CONCLUSION: These findings will be useful for not only elucidating mechanisms of hepatic differentiation of hiPS cells but also cell-based therapy for liver diseases.

19.
Mol Ther ; 21(7): 1424-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23670574

RESUMEN

In vitro generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) has the potential to provide novel therapeutic approaches for replacing bone marrow (BM) transplantation without rejection or graft versus host disease. Hitherto, however, it has proved difficult to generate truly functional HSCs transplantable to adult host mice. Here, we demonstrate a unique in vivo differentiation system yielding engraftable HSCs from mouse and human iPSCs in teratoma-bearing animals in combination with a maneuver to facilitate hematopoiesis. In mice, we found that iPSC-derived HSCs migrate from teratomas into the BM and their intravenous injection into irradiated recipients resulted in multilineage and long-term reconstitution of the hematolymphopoietic system in serial transfers. Using this in vivo generation system, we could demonstrate that X-linked severe combined immunodeficiency (X-SCID) mice can be treated by HSCs derived from gene-corrected clonal iPSCs. It should also be noted that neither leukemia nor tumors were observed in recipients after transplantation of iPSC-derived HSCs. Taken our findings together, our system presented in this report should provide a useful tool not only for the study of HSCs, but also for practical application of iPSCs in the treatment of hematologic and immunologic diseases.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Teratoma/patología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones SCID , Ratones Transgénicos , Factor de Células Madre/farmacología , Trombopoyetina/farmacología
20.
Stem Cell Res Ther ; 15(1): 106, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627844

RESUMEN

BACKGROUND: Although oncogenic RAS mutants are thought to exert mutagenic effects upon blood cells, it remains uncertain how a single oncogenic RAS impacts non-transformed multipotent hematopoietic stem or progenitor cells (HPCs). Such potential pre-malignant status may characterize HPCs in patients with RAS-associated autoimmune lymphoproliferative syndrome-like disease (RALD). This study sought to elucidate the biological and molecular alterations in human HPCs carrying monoallelic mutant KRAS (G13C) with no other oncogene mutations. METHODS: We utilized induced pluripotent stem cells (iPSCs) derived from two unrelated RALD patients. Isogenic HPC pairs harboring either wild-type KRAS or monoallelic KRAS (G13C) alone obtained following differentiation enabled reliable comparative analyses. The compound screening was conducted with an established platform using KRAS (G13C) iPSCs and differentiated HPCs. RESULTS: Cell culture assays revealed that monoallelic KRAS (G13C) impacted both myeloid differentiation and expansion characteristics of iPSC-derived HPCs. Comprehensive RNA-sequencing analysis depicted close clustering of HPC samples within the isogenic group, warranting that comparative studies should be performed within the same genetic background. When compared with no stimulation, iPSC-derived KRAS (G13C)-HPCs showed marked similarity with the wild-type isogenic control in transcriptomic profiles. After stimulation with cytokines, however, KRAS (G13C)-HPCs exhibited obvious aberrant cell-cycle and apoptosis responses, compatible with "dysregulated expansion," demonstrated by molecular and biological assessment. Increased BCL-xL expression was identified amongst other molecular changes unique to mutant HPCs. With screening platforms established for therapeutic intervention, we observed selective activity against KRAS (G13C)-HPC expansion in several candidate compounds, most notably in a MEK- and a BCL-2/BCL-xL-inhibitor. These two compounds demonstrated selective inhibitory effects on KRAS (G13C)-HPCs even with primary patient samples when combined. CONCLUSIONS: Our findings indicate that a monoallelic oncogenic KRAS can confer dysregulated expansion characteristics to non-transformed HPCs, which may constitute a pathological condition in RALD hematopoiesis. The use of iPSC-based screening platforms will lead to discovering treatments that enable selective inhibition of RAS-mutated HPC clones.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA