Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(21): 213001, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809166

RESUMEN

We report the observation of the radiative decay of singly charged noble gas ground-state ions embedded in heterogeneous van der Waals clusters. Electron-photon coincidence spectroscopy and dispersed photon spectroscopy are applied to identify the radiative charge transfer from Kr atoms to a Ne_{2}^{+} dimer, which forms after single valence photoionization of Ne atoms at the surface of a NeKr cluster. This mechanism might be a fundamental decay process of ionized systems in an environment.

2.
Commun Chem ; 5(1): 42, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36697752

RESUMEN

Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.

3.
J Phys Chem Lett ; 10(5): 1078-1082, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30779875

RESUMEN

Energy and charge transfer processes play an important role in many fundamental reactions in chemistry, biochemistry, and even technology. If an entity that is part of a larger system is photoexcited, its energy will dissipate, for example, by rearrangement of electron density in a large molecule or by photon emission (fluorescence). Here, we report the experimental observation of free electrons from a heterogeneous van der Waals cluster, in which some sites act as electron emitters receiving their energy efficiently from other "antenna" sites that are resonantly excited in the UV range. By complementing electron spectroscopy with fluorescence detection, we can directly observe that electron emission via this mechanism completely quenches fluorescence once the channel opens. We suggest this mechanism to be important for both quenching of fluorescence as well as resonantly enhancing free electron production in a variety of systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA