Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochemistry ; 56(24): 3089-3098, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28558199

RESUMEN

Microsomal glutathione transferase 1 (MGST1) has a unique ability to be activated, ≤30-fold, by modification with sulfhydryl reagents. MGST1 exhibits one-third-of-the-sites reactivity toward glutathione and hence heterogeneous binding to different active sites in the homotrimer. Limited turnover stopped-flow kinetic measurements of the activated enzyme allowed us to more accurately determine the KD for the "third" low-affinity GSH binding site (1.4 ± 0.3 mM). The rate of thiolate formation, k2 (0.77 ± 0.06 s-1), relevant to turnover, could also be determined. By deriving the steady-state rate equation for a random sequential mechanism for MGST1, we can predict KM, kcat, and kcat/KM values from these and previously determined pre-steady-state rate constants (all determined at 5 °C). To assess whether the pre-steady-state behavior can account for the steady-state kinetic behavior, we have determined experimental values for kinetic parameters at 5 °C. For reactive substrates and the activated enzyme, data for the microscopic steps account for the global mechanism of MGST1. For the unactivated enzyme and more reactive electrophilic substrates, pre-steady-state and steady-state data can be reconciled only if a more active subpopulation of MGST1 is assumed. We suggest that unactivated MGST1 can be partially activated in its unmodified form. The existence of an activated subpopulation (approximately 10%) could be demonstrated in limited turnover experiments. We therefore suggest that MSGT1 displays a preexisting dynamic equilibrium between high- and low-activity forms.


Asunto(s)
Glutatión Transferasa/metabolismo , Biocatálisis , Activación Enzimática , Glutatión Transferasa/química , Humanos , Cinética , Modelos Moleculares , Estructura Molecular
2.
Mol Pharm ; 13(6): 2010-25, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27093577

RESUMEN

Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS-etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS-DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS-DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS-DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance mechanisms in cells. Here we propose that GST-dependent prodrugs require a conversion rate "window" in order to selectively target GST overexpressing cells, while limiting their effects on normal cells. Prodrugs are furthermore a suitable system to specifically target GSTs and to overcome various drug resistance mechanisms that apply to the parental drug.


Asunto(s)
Glutatión Transferasa/metabolismo , Profármacos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Citostáticos/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Etopósido/farmacología , Glutatión/metabolismo , Humanos , Células MCF-7 , Sulfonamidas/farmacología , Regulación hacia Arriba/efectos de los fármacos
3.
Mol Pharmacol ; 83(1): 245-55, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23093495

RESUMEN

Bortezomib is a highly selective inhibitor of the 26S proteasome and has been approved for clinical use in the treatment of relapsing and refractory multiple myeloma and mantle cell lymphoma. Clinical trials are also underway to assess the role of bortezomib in several other human malignancies, including leukemia. However, the mechanism(s) by which bortezomib acts remain to be fully understood. Here, we studied the molecular requirements of bortezomib-induced apoptosis using the human T-cell leukemic Jurkat cells stably transfected with or without shRNA against apoptotic protease-activating factor-1 (Apaf-1). The Apaf-1-deficient Jurkat T cells were resistant to bortezomib-induced apoptosis, as assessed by caspase-3 activity, poly(ADP-ribose) polymerase cleavage, phosphatidylserine externalization, and hypodiploid DNA content. In contrast, Apaf-1-deficient cells were sensitive to Fas-induced apoptosis. Bortezomib induced an upregulation of the pro-apoptotic protein Noxa, loss of mitochondrial transmembrane potential, and release of cytochrome c in cells expressing or not expressing Apaf-1. Transient silencing of Apaf-1 expression in RPMI 8402 T-cell leukemic cells also diminished bortezomib-induced apoptosis. Fas-associated death domain (FADD)-deficient Jurkat cells were resistant to Fas-mediated apoptosis yet remained sensitive to bortezomib. Our results show that bortezomib induces apoptosis by regulating pathways that are mechanistically different from those activated upon death receptor ligation. Furthermore, in silico analyses of public transcriptomics databases indicated elevated Apaf-1 expression in several hematologic malignancies, including acute lymphoblastic and myeloid leukemia. We also noted variable Apaf-1 expression in a panel of samples from patients with acute lymphoblastic leukemia. Our results suggest that the expression of Apaf-1 may be predictive of the response to proteasome inhibition.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Ácidos Borónicos/farmacología , Pirazinas/farmacología , Receptor fas/fisiología , Adolescente , Factor Apoptótico 1 Activador de Proteasas/genética , Bortezomib , Caspasa 3/metabolismo , Niño , Preescolar , Citocromos c/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/fisiología , Silenciador del Gen , Humanos , Células Jurkat , Leucemia Mieloide/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , Transcriptoma
4.
Sci Rep ; 7(1): 7897, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801553

RESUMEN

Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.


Asunto(s)
Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Animales , Sitios de Unión , Cristalografía , Glutatión/química , Glutatión/metabolismo , Glutatión Transferasa/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutagénesis , Proteínas Mutantes/genética , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Ratas
5.
Cancer Lett ; 319(2): 232-241, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22266096

RESUMEN

Although pre-clinical and clinical studies on PARP1 inhibitors, alone and in combination with DNA-damaging agents, show promising results, further ways to improve and broaden the scope of application of this therapeutic approach are warranted. To this end, we have investigated the possibility of improving the response of BRCA1 mutant breast cancer cells to PARP1 inhibition by co-targeting the PI3K pathway. Human breast cancer cell lines with or without the expression of BRCA1 and/or PTEN were treated with PARP1 and PI3K inhibitors as single agents and in combination. PARP1 inhibition induced DNA damage conferring a G2/M arrest and decrease in viability, paralleled by the induction of apoptosis. PI3K inhibition alone caused a G1 arrest and decreased cell growth. Most importantly, sequential combination of PARP and PI3K inhibitors interacted synergistically to significantly decrease growth compared to PARP inhibition alone. Global transcriptional profiling revealed that this decrease in growth was associated with down-regulation of macromolecule biosynthesis and the induction of apoptosis. Taken together, these results suggest an improved treatment strategy for BRCA1-mutant and possibly also triple-negative breast cancers with similar molecular defects.


Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Quimioterapia Combinada , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA