Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967551

RESUMEN

Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.

2.
Chem Soc Rev ; 53(5): 2530-2577, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38299314

RESUMEN

Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.

3.
J Am Chem Soc ; 146(22): 15010-15018, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696712

RESUMEN

Polarons belong to a class of extensively studied quasiparticles that have found applications spanning diverse fields, including charge transport, colossal magnetoresistance, thermoelectricity, (multi)ferroism, optoelectronics, and photovoltaics. It is notable, though, that their interaction with the local environment has been overlooked so far. We report an unexpected phenomenon of the solvent-induced generation of polaronic spin active states in a two-dimensional (2D) material fluorographene under UV light. Furthermore, we present compelling evidence of the solvent-specific nature of this phenomenon. The generation of spin-active states is robust in acetone, moderate in benzene, and absent in cyclohexane. Continuous wave X-band electron paramagnetic resonance (EPR) spectroscopy experiments revealed a massive increase in the EPR signal for fluorographene dispersed in acetone under UV-light irradiation, while the system did not show any significant signal under dark conditions and without the solvent. The patterns appeared due to the generation of transient magnetic photoexcited states of polaronic character, which encompassed the net 1/2 spin moment detectable by EPR. Advanced ab initio calculations disclosed that polarons are plausibly formed at radical sites in fluorographene which interact strongly with acetone molecules in their vicinity. Additionally, we present a comprehensive scenario for multiplication of polaronic spin active species, highlighting the pivotal role of the photoinduced charge transfer from the solvent to the electrophilic radical centers in fluorographene. We believe that the solvent-tunable polaron formation with the use of UV light and an easily accessible 2D nanomaterial opens up a wide range of future applications, ranging from molecular sensing to magneto-optical devices.

4.
Small ; 20(29): e2310402, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342667

RESUMEN

Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures.

5.
Chem Rev ; 122(24): 17241-17338, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36318747

RESUMEN

Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".


Asunto(s)
Grafito , Estructuras Metalorgánicas , Catálisis , Conductividad Eléctrica , Electrónica
6.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612422

RESUMEN

As compounds of natural origin enter human body, it is necessary to investigate their possible interactions with the metabolism of drugs and xenobiotics in general, namely with the cytochrome P450 (CYP) system. Phytic acid (myo-inositol hexaphosphoric acid, IP6) is mainly present in plants but is also an endogenous compound present in mammalian cells and tissues. It has been shown to exhibit protective effect in many pathological conditions. For this paper, its interaction with CYPs was studied using human liver microsomes, primary human hepatocytes, the HepG2 cell line, and molecular docking. Docking experiments and absorption spectra demonstrated the weak ability of IP6 to interact in the heme active site of CYP1A. Molecular docking suggested that IP6 preferentially binds to the protein surface, whereas binding to the active site of CYP1A2 was found to be less probable. Subsequently, we investigated the ability of IP6 to modulate the metabolism of xenobiotics for both the mRNA expression and enzymatic activity of CYP1A enzymes. Our findings revealed that IP6 can slightly modulate the mRNA levels and enzyme activity of CYP1A. However, thanks to the relatively weak interactions of IP6 with CYPs, the chances of the mechanisms of clinically important drug-drug interactions involving IP6 are low.


Asunto(s)
Ácido Fítico , Xenobióticos , Humanos , Animales , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450 , ARN Mensajero , Mamíferos
7.
Small ; 19(32): e2206587, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37038085

RESUMEN

Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.

8.
Small ; 19(51): e2207216, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36703534

RESUMEN

Tackling the current problem of antimicrobial resistance (AMR) requires fast, inexpensive, and effective methods for controlling and detecting antibiotics in diverse samples at the point of interest. Cost-effective, disposable, point-of-care electrochemical biosensors are a particularly attractive option. However, there is a need for conductive and versatile carbon-based materials and inks that enable effective bioconjugation under mild conditions for the development of robust, sensitive, and selective devices. This work describes a simple and fast methodology to construct an aptasensor based on a novel graphene derivative equipped with alkyne groups prepared via fluorographene chemistry. Using click chemistry, an aptamer is immobilized and used as a successful platform for the selective determination of ampicillin in real samples in the presence of interfering molecules. The electrochemical aptasensor displayed a detection limit of 1.36 nM, high selectivity among other antibiotics, the storage stability of 4 weeks, and is effective in real samples. Additionally, structural and docking simulations of the aptamer shed light on the ampicillin binding mechanism. The versatility of this platform opens up wide possibilities for constructing a new class of aptasensor based on disposable screen-printed carbon electrodes usable in point-of-care devices.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Grafito/química , Química Clic , Alquinos , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Carbono/química , Técnicas Biosensibles/métodos , Electrodos , Oro/química , Ampicilina , Antibacterianos , Límite de Detección
9.
Chembiochem ; 24(24): e202300510, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37747702

RESUMEN

3',5'-Cyclic nucleotides play a fundamental role in modern biochemical processes and have been suggested to have played a central role at the origin of terrestrial life. In this work, we suggest that a formamide-based systems chemistry might account for their availability on the early Earth. In particular, we demonstrate that in a liquid formamide environment at elevated temperatures 3',5'-cyclic nucleotides are obtained in good yield and selectivity upon intramolecular cyclization of 5'-phosphorylated nucleosides in the presence of carbodiimides.


Asunto(s)
Adenosina , Guanosina Monofosfato , Ciclización , Nucleósidos/química , Nucleótidos Cíclicos , Formamidas/química , Guanosina
10.
J Chem Inf Model ; 63(7): 2133-2146, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36989143

RESUMEN

RNA molecules play a key role in countless biochemical processes. RNA interactions, which are of highly diverse nature, are determined by the fact that RNA is a highly negatively charged polyelectrolyte, which leads to intimate interactions with an ion atmosphere. Although RNA molecules are formally single-stranded, canonical (Watson-Crick) duplexes are key components of folded RNAs. A double-stranded (ds) RNA is also important for the design of RNA-based nanostructures and assemblies. Despite the fact that the description of canonical dsRNA is considered the least problematic part of RNA modeling, the imperfect shape and flexibility of dsRNA can lead to imbalances in the simulations of larger RNAs and RNA-containing assemblies. We present a comprehensive set of molecular dynamics (MD) simulations of four canonical A-RNA duplexes. Our focus was directed toward the characterization of the influence of varying ion concentrations and of the size of the solvation box. We compared several water models and four RNA force fields. The simulations showed that the A-RNA shape was most sensitive to the RNA force field, with some force fields leading to a reduced inclination of the A-RNA duplexes. The ions and water models played a minor role. The effect of the box size was negligible, and even boxes with a small fraction of the bulk solvent outside the RNA hydration sphere were sufficient for the simulation of the dsRNA.


Asunto(s)
Simulación de Dinámica Molecular , ARN , ARN/química , Conformación de Ácido Nucleico , Agua/química , Iones/química
11.
Small ; 18(49): e2204408, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36216589

RESUMEN

Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.


Asunto(s)
Ácidos Nucleicos , Nanotecnología , Computadores
12.
Small ; 18(4): e2104628, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894080

RESUMEN

Metal-organic frameworks (MOFs) materials constructed by the coordination chemistry of metal ions and organic ligands are important members of the crystalline materials family. Owing to their exceptional properties, for example, high porosity, tunable pore size, and large surface area, MOFs have been applied in several fields such as gas or liquid adsorbents, sensors, batteries, and supercapacitors. However, poor conductivity and low stability hamper their potential applications in several attractive fields such as energy and gas storage. The integration of MOFs with carbon nanotubes (CNTs), a well-established carbon allotrope that exhibits high conductivity and stability, has been proposed as an efficient strategy to overcome such limitations. By combining the advantages of MOFs and CNTs, a wide variety of composites can be prepared with properties superior to their parent materials. This review provides a comprehensive summary of the preparation of CNT@MOF composites and focuses on their recent applications in several important fields, such as water purification, gas storage and separation, sensing, electrocatalysis, and energy storage (supercapacitors and batteries). Future challenges and prospects for CNT@MOF composites are also discussed.


Asunto(s)
Estructuras Metalorgánicas , Nanotubos de Carbono , Conductividad Eléctrica , Iones , Estructuras Metalorgánicas/química , Metales/química
13.
Small ; 18(38): e2201712, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026533

RESUMEN

Inorganic electrides have been proved to be efficient hosts for incorporating transition metals, which can effectively act as active sites giving an outstanding catalytic performance. Here, it is demonstrated that a reusable and recyclable (for more than 7 times) copper-based intermetallic electride catalyst (LaCu0.67 Si1.33 ), in which the Cu sites activated by anionic electrons with low-work function are uniformly dispersed in the lattice framework, shows vast potential for the selective C-H oxidation of industrially important hydrocarbons and cycloaddition of CO2 with epoxide. This leads to the production of value-added cyclic carbonates under mild reaction conditions. Importantly, the LaCu0.67 Si1.33 catalyst enables much higher turnover frequencies for the C-H oxidation (up to 25 276 h-1 ) and cycloaddition of CO2 into epoxide (up to 800 000 h-1 ), thus exceeding most nonnoble as well as noble metal catalysts. Density functional theory investigations have revealed that the LaCu0.67 Si1.33 catalyst is involved in the conversion of N-hydroxyphthalimide (NHPI) into the phthalimido-N-oxyl (PINO), which then triggers selective abstraction of an H atom from ethylbenzene for the generation of a radical susceptible to further oxygenation in the presence of O2 .

14.
Small ; 18(33): e2201003, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775954

RESUMEN

Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g-1 , respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+ , respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.


Asunto(s)
Grafito , Metales Pesados , Adsorción , Cadmio , Descontaminación , Plomo , Agua
15.
Nanotechnology ; 33(21)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35147526

RESUMEN

The growing gap between the volume of digital data being created and the extent of available storage capacities stimulates intensive research into surface-supported, well-ordered array of atom-sized magnets that represents the ultimate limit of magnetic data storage. Anchoring transition-metal heterodimers in vacancy defects in the graphene lattice has been identified as a vivid strategy to achieve large magnetic anisotropy energy (MAE) up to 80 meV with an easy axis aligned along the dimer bond. In this paper we have made a significant leap forward finding out MAE of 119 meV for an OsPt dimer and 170 meV for an OsPd dimer bound to a single nitrogen-decorated vacancy defect. The system with the highest MAE and with the theoretical storage density of ∼490 Tb·inch-2pushes the current limit of theoretical blocking temperature in graphene-supported transition-metal dimers from ∼20 to ∼44 K assuming the relaxation time of 10 years. The mechanism of the enhanced MAE is discussed.

16.
Nanotechnology ; 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35144253

RESUMEN

The growing gap between the volume of digital data being created and the extent of available storage capacities stimulates intensive research into surface-supported, well-ordered array of atom-sized magnets that represents the ultimate limit of magnetic data storage. Anchoring transition metal heterodimers in vacancy defects in the graphene lattice has been identified as a vivid strategy to achieve large magnetic anisotropy energy (MAE) up to 80 meV with an easy axis aligned along the dimer bond. In this paper we have made a significant leap forward finding out MAE of 119 meV for an OsPt dimer and 170 meV for an OsPd dimer bound to a single nitrogen-decorated vacancy defect. The system with the highest MAE and with the theoretical storage density of 490 Tb inch-2pushes the current limit of theoretical blocking temperature in graphene-supported transition-metal dimers from ~20 K to ~44 K assuming the relaxation time of 10 years. The mechanism of the enhanced MAE is discussed.

17.
Phys Chem Chem Phys ; 25(1): 286-296, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475541

RESUMEN

Anchoring single metal atoms on suitable substrates is a convenient route towards materials with unique electronic and magnetic properties exploitable in a wide range of applications including sensors, data storage, and single atom catalysis (SAC). Among a large portfolio of available substrates, carbon-based materials derived from graphene and its derivatives have received growing concern due to their high affinity to metals combined with biocompatibility, low toxicity, and accessibility. Cyanographene (GCN) as highly functionalized graphene containing homogeneously distributed nitrile groups perpendicular to the surface offers exceptionally favourable arrangement for anchoring metal atoms enabling efficient charge exchange between the metal and the substrate. However, the binding characteristics of metal species can be significantly affected by the coordination effects. Here we employed density functional theory (DFT) calculations to analyse the role of coordination in the binding of late 3d cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Cu+, and Zn2+) to GCN in aqueous solutions. The inspection of several plausible coordination types revealed the most favourable arrangements. Among the studied species, copper cations were found to be the most tightly bonded to GCN, which was also confirmed by the X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and isothermal titration calorimetry (ITC) measurements. In general, the inclusion of coordination effects significantly reduced the binding affinities predicted by implicit solvation models. Clearly, to build-up reliable models of SAC architectures in the environments enabling the formation of a coordination sphere, such effects need to be properly taken into account.


Asunto(s)
Grafito , Metales/química , Cobre/química , Cationes
18.
Small ; 17(16): e2006477, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783134

RESUMEN

Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.

19.
Nanotechnology ; 32(23)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33626515

RESUMEN

Single-atom magnets represent the ultimate limit of magnetic data storage. The identification of substrates that anchor atom-sized magnets firmly and, thus, prevent their diffusion and large magnetic anisotropy has been at the centre of intense research efforts for a long time. Using density functional theory we show the binding of transition metal (TM) atoms in defect sites in the graphene lattice: single vacancy and double vacancy, both pristine and decorated by pyridinic nitrogen atoms, are energetically more favourable than away from the centre of defects, which could be used for engineering the position of TMs with atomic precision. Relativistic calculations revealed magnetic anisotropy energy (MAE) of ∼10 meV for Ir@NSV with an easy axis parallel to the graphene plane. MAE can be remarkably boosted to 50 meV for OsIr@NSV with the easy axis perpendicular to the graphene plane, which paves the way to the storage density of ∼490 Tb/inch2with the blocking temperature of 14 K assuming the relaxation time of 10 years. Magnetic anisotropy is discussed based on the relativistic electronic structures. The influence of an orbital-dependent on-site Coulomb repulsionUand a non-local correlation functional optB86b-vdW on MAE is also discussed.

20.
Nucleic Acids Res ; 47(14): 7276-7293, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31318975

RESUMEN

Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.


Asunto(s)
ADN de Cadena Simple/química , ADN/química , G-Cuádruplex , Guanina/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Animales , Secuencia de Bases , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Guanina/metabolismo , Humanos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA