Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chimia (Aarau) ; 75(3): 202-207, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33766203

RESUMEN

Perovskite oxynitrides are an established class of photocatalyst materials for water splitting. Previous computational studies have primarily focused on their bulk properties and have drawn relevant conclusions on their light absorption and charge transport properties. The actual catalytic conversions, however, occur on their surfaces and a detailed knowledge of the atomic-scale structure and processes on oxynitride surfaces is indispensable to further improve these materials. In this contribution, we summarize recent progress made in the understanding of perovskite oxynitride surfaces, highlight key processes that set these materials apart from their pure oxide counterparts and discuss challenges and possible future directions for research on oxynitrides.

2.
Chemphyschem ; 20(22): 3154-3162, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30938896

RESUMEN

In the present work we investigate the structure sensitivity of the oxygen evolution reaction (OER) combining electrochemistry, in situ spectroscopy and density functional theory calculations. The intrinsic difficulty of such studies is the fact that at electrode potentials where the OER is observed, the electrode material is highly oxidized. As a consequence, the surface structure during the reaction is in general ill-defined and only scarce knowledge exists concerning the structure-activity relationship of this important reaction. To alleviate these challenging conditions, we chose as starting point well-defined Pt single-crystal electrodes, which we exposed to well-defined conditioning before studying their OER rate. Using this approach, a potential region is identified where the OER on Pt is indeed structure-sensitive with Pt(100) being significantly more active than Pt(111). This experimental finding is in contrast to a DFT analysis of the adsorption strength of the reaction intermediates O*, OH*, and OOH* often used to plot the activity in a volcano curve. It is proposed that as a consequence of the highly oxidizing conditions, the structure-sensitive charge-transfer resistance through the interface determines the observed reaction rate.

3.
J Phys Chem Lett ; 12(22): 5339-5343, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34062062

RESUMEN

Tin halide perovskites (THPs) have been established as a lower-toxicity alternative to lead halide perovskites. In spite of the increasing interest, the behavior of photoexcited charges has not been well understood in this class of materials. We here investigate the behavior of excess electrons in a series of tin halide perovskites by employing advanced electronic-structure calculations. We first focus on CsSnBr3 and show that electron localization is favorable in this compound and that bipolaronic states are the most stable form of self-trapped electrons. We then extend the analysis to CsSnI3, CsSnCl3, MASnBr3, FASnBr3, and DMASnBr3 and show that electron bipolarons are stable in all these compounds, thus indicating that strong electron localization is recurrent in THPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA