Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Rev Genet ; 25(8): 578-595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38424237

RESUMEN

RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , Neoplasias/genética , Neoplasias/terapia , ARN Largo no Codificante/genética , Animales , Edición Génica/métodos , Ingeniería Genética/métodos , Terapia Genética/métodos
2.
Biochim Biophys Acta ; 1863(7 Pt B): 1953-60, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26620798

RESUMEN

Cardiac development, function and pathological remodelling in response to stress depend on the dynamic control of tissue specific gene expression by distant acting transcriptional enhancers. Recently, super-enhancers (SEs), also known as stretch or large enhancer clusters, are emerging as sentinel regulators within the gene regulatory networks that underpin cellular functions. It is becoming increasingly evident that long noncoding RNAs (lncRNAs) associated with these sequences play fundamental roles for enhancer activity and the regulation of the gene programs hardwired by them. Here, we review this emerging landscape, focusing on the roles of SEs and their derived lncRNAs in cardiovascular development and disease. We propose that exploration of this genomic landscape could provide novel therapeutic targets and approaches for the amelioration of cardiovascular disease. Ultimately we envisage a future of ncRNA therapeutics targeting the SE landscape to alleviate cardiovascular disease. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Enfermedades Cardiovasculares/genética , Sistema Cardiovascular , Elementos de Facilitación Genéticos , ARN Largo no Codificante/genética , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Morfogénesis , Fenotipo , ARN Largo no Codificante/metabolismo , Factores de Riesgo
3.
Am J Physiol Endocrinol Metab ; 310(5): E303-12, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26670484

RESUMEN

The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3ß and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodominio/genética , Hiperglucemia/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Brn-3B/genética , Animales , Peso Corporal/genética , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ácido Glucárico/farmacología , Intolerancia a la Glucosa/genética , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Homeodominio/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Immunoblotting , Insulina/farmacología , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Mutación , ARN Mensajero/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción Brn-3B/efectos de los fármacos , Factor de Transcripción Brn-3B/metabolismo
4.
Eur Heart J ; 36(6): 353-68a, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24786300

RESUMEN

AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.


Asunto(s)
Infarto del Miocardio/genética , ARN Largo no Codificante/genética , Transcriptoma/genética , Análisis de Varianza , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Cromatina/genética , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones Endogámicos C57BL , ARN Largo no Codificante/metabolismo , Transfección , Remodelación Vascular/genética
5.
J Mol Cell Cardiol ; 89(Pt A): 17-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26408097

RESUMEN

Recent advances in sequencing and genomic technologies have resulted in the discovery of thousands of previously unannotated long noncoding RNAs (lncRNAs). However, their function in the cardiovascular system remains elusive. Here we review and discuss considerations for cardiovascular lncRNA discovery, annotation and functional characterization. Although we primarily focus on the heart, the proposed pipeline should foster functional and mechanistic exploration of these transcripts in various cardiovascular pathologies. Moreover, these insights could ultimately lead to novel therapeutic approaches targeting lncRNAs for the amelioration of cardiovascular diseases including heart failure.


Asunto(s)
Sistema Cardiovascular/metabolismo , ARN Largo no Codificante/genética , Animales , Humanos , Anotación de Secuencia Molecular , ARN Largo no Codificante/metabolismo
6.
J Mol Cell Cardiol ; 89(Pt A): 98-112, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26423156

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation. Many of these were associated with active cardiac enhancer and super enhancers (SE) with their expression being correlated with proximal cardiac genes. One of the most upregulated lncRNAs was a SE-associated lncRNA that was named CARMEN, (CAR)diac (M)esoderm (E)nhancer-associated (N)oncoding RNA. CARMEN exhibits RNA-dependent enhancing activity and is upstream of the cardiac mesoderm-specifying gene regulatory network. Interestingly, CARMEN interacts with SUZ12 and EZH2, two components of the polycomb repressive complex 2 (PRC2). We demonstrate that CARMEN knockdown inhibits cardiac specification and differentiation in cardiac precursor cells independently of MIR-143 and -145 expression, two microRNAs located proximal to the enhancer sequences. Importantly, CARMEN expression was activated during pathological remodeling in the mouse and human hearts, and was necessary for maintaining cardiac identity in differentiated cardiomyocytes. This study demonstrates therefore that CARMEN is a crucial regulator of cardiac cell differentiation and homeostasis.


Asunto(s)
Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Corazón/embriología , Homeostasis/genética , ARN Largo no Codificante/metabolismo , Animales , Linaje de la Célula/genética , Elementos de Facilitación Genéticos/genética , Proteína Potenciadora del Homólogo Zeste 2 , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Miocardio/patología , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/genética , Células Madre/citología , Transcriptoma/genética
7.
J Mol Cell Cardiol ; 76: 55-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25149110

RESUMEN

The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.


Asunto(s)
Elementos de Facilitación Genéticos , Corazón/embriología , ARN Largo no Codificante/fisiología , Animales , Células Cultivadas , Células Madre Embrionarias/fisiología , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Cardiopatías/genética , Cardiopatías/metabolismo , Humanos , Ratones , Proteínas Musculares/metabolismo , Cultivo Primario de Células
8.
Biochim Biophys Acta ; 1833(4): 923-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22951218

RESUMEN

Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Asunto(s)
Insuficiencia Cardíaca/genética , MicroARNs/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , Recuperación de la Función/genética , Regeneración , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Homeostasis , Humanos , MicroARNs/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , ARN Largo no Codificante/metabolismo , Transducción de Señal
9.
Heliyon ; 9(1): e13087, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36747920

RESUMEN

Cardiovascular disorders such as heart failure are leading causes of mortality. Patient stratification via identification of novel biomarkers could improve management of cardiovascular diseases of complex etiologies. Long-noncoding RNAs (lncRNAs) are highly tissue-specific in nature and have emerged as important biomarkers in human diseases. In this study, we aimed to identify cardiac-enriched lncRNAs as potential biomarkers for cardiovascular conditions. Deep RNA sequencing and quantitative PCR identified differentially expressed lncRNAs between failing and non-failing hearts. An independent dataset was used to evaluate the enrichment of lncRNAs in normal hearts. We identified a panel of 2906 lncRNAs, named FIMICS, that were either cardiac-enriched or differentially expressed between failing and non-failing hearts. Expression of lncRNAs in blood samples differentiated patients with myocarditis and acute myocardial infarction. We hereby present the FIMICS panel, a readily available tool to provide insights into cardiovascular pathologies and which could be helpful for diagnosis, monitoring and prognosis purposes.

10.
JACC Basic Transl Sci ; 8(6): 658-674, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426530

RESUMEN

After myocardial infarction (MI), fibroblasts progress from proliferative to myofibroblast states, resulting in fibrosis. Platelet-derived growth factors (PDGFs) are reported to induce fibroblast proliferation, myofibroblast differentiation, and fibrosis. However, we have previously shown that PDGFs improve heart function post-MI without increasing fibrosis. We treated human cardiac fibroblasts with PDGF isoforms then performed RNA sequencing to show that PDGFs reduced cardiac fibroblasts myofibroblast differentiation and downregulated cell cycle pathways. Using mouse/pig MI models, we reveal that PDGF-AB infusion increases cell-cell interactions, reduces myofibroblast differentiation, does not affect proliferation, and accelerates scar formation. RNA sequencing of pig hearts after MI showed that PDGF-AB reduces inflammatory cytokines and alters both transcript variants and long noncoding RNA expression in cell cycle pathways. We propose that PDGF-AB could be used therapeutically to manipulate post-MI scar maturation with subsequent beneficial effects on cardiac function.

11.
Nat Commun ; 14(1): 7024, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919291

RESUMEN

After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , ARN Largo no Codificante , Masculino , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Infarto del Miocardio/metabolismo
12.
Breast Cancer Res ; 13(1): R5, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21241485

RESUMEN

INTRODUCTION: In cancer cells, elevated transcription factor-related Brn-3a regulator isolated from brain cDNA (Brn-3b) transcription factor enhances proliferation in vitro and increases tumour growth in vivo whilst conferring drug resistance and migratory potential, whereas reducing Brn-3b slows growth both in vitro and in vivo. Brn-3b regulates distinct groups of key target genes that control cell growth and behaviour. Brn-3b is elevated in >65% of breast cancer biopsies, but mechanisms controlling its expression in these cells are not known. METHODS: Bioinformatics analysis was used to identify the regulatory promoter region and map transcription start site as well as transcription factor binding sites. Polymerase chain reaction (PCR) cloning was used to generate promoter constructs for reporter assays. Chromatin immunoprecipitation and site-directed mutagenesis were used to confirm the transcription start site and autoregulation. MCF-7 and Cos-7 breast cancer cells were used. Cells grown in culture were transfected with Brn-3b promoter and treated with growth factors or estradiol to test for effects on promoter activity. Quantitative reverse transcriptase PCR assays and immunoblotting were used to confirm changes in gene and protein expression. RESULTS: We cloned the Brn-3b promoter, mapped the transcription start site and showed stimulation by estradiol and growth factors, nerve growth factor and epidermal growth factor, which are implicated in breast cancer initiation and/or progression. The effects of growth factors are mediated through the mitogen-activated protein kinase pathway, whereas hormone effects act via oestrogen receptor α (ERα). Brn-3b also autoregulates its expression and cooperates with ERα to further enhance levels. CONCLUSIONS: Key regulators of growth in cancer cells, for example, oestrogens and growth factors, can stimulate Brn-3b expression, and autoregulation also contributes to increasing Brn-3b in breast cancers. Since increasing Brn-3b profoundly enhances growth in these cells, understanding how Brn-3b is increased in breast cancers will help to identify strategies for reducing its expression and thus its effects on target genes, thereby reversing its effects in breast cancer cells.


Asunto(s)
Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Transcripción Brn-3B/genética , Sitios de Unión/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Clonación Molecular , Factor de Crecimiento Epidérmico/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Orden Génico , Homeostasis , Humanos , Mutación , Factor de Crecimiento Nervioso/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Factor de Transcripción Brn-3B/metabolismo , Sitio de Iniciación de la Transcripción
13.
Artículo en Inglés | MEDLINE | ID: mdl-31932317

RESUMEN

The exquisite transcriptional control of developmental gene programs is critical for hardwiring the complex expression patterns that govern cell-fate determination and differentiation during heart development. During the past several years, studies have illuminated our understanding of a complex noncoding transcriptional landscape, primarily associated with long noncoding RNAs (lncRNAs), that is implicated in these developmental processes and has begun to reveal key functions of these transcripts. In this review, we discuss the expanding roles for lncRNAs in the earliest points of cardiac development and through differentiation and maturation of multiple cell types within the adult heart. We go on to outline the diverse mechanisms by which cardiovascular lncRNAs orchestrate these transcriptional programs, explore the challenges linked to the study of lncRNAs in developmental phenotypes, and summarize the implications for these molecules in human cardiovascular disorders.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/crecimiento & desarrollo , ARN Largo no Codificante/metabolismo , Animales , Embrión de Mamíferos , Humanos , ARN Largo no Codificante/genética
14.
BMC Mol Biol ; 9: 50, 2008 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-18489770

RESUMEN

BACKGROUND: Myocyte stress 1 (MS1) is a striated muscle actin binding protein required for the muscle specific activity of the evolutionary ancient myocardin related transcription factor (MRTF)/serum response factor (SRF) transcriptional pathway. To date, little is known about the molecular mechanisms that govern skeletal muscle specific expression of MS1. Such mechanisms are likely to play a major role in modulating SRF activity and therefore muscle determination, differentiation and regeneration. In this study we employed a comparative in silico analysis coupled with an experimental promoter characterisation to delineate these mechanisms. RESULTS: Analysis of MS1 expression in differentiating C2C12 muscle cells demonstrated a temporal differentiation dependent up-regulation in ms1 mRNA. An in silico comparative sequence analysis identified two conserved putative myogenic regulatory domains within the proximal 1.5 kbp of 5' upstream sequence. Co-transfecting C2C12 myoblasts with ms1 promoter/luciferase reporters and myogenic regulatory factor (MRF) over-expression plasmids revealed specific sensitivity of the ms1 promoter to MyoD. Subsequent mutagenesis and EMSA analysis demonstrated specific targeting of MyoD at two distinct E-Boxes (E1 and E2) within identified evolutionary conserved regions (ECRs, alpha and beta). Chromatin immunoprecipitation (ChIP) analysis indicates that co-ordinated binding of MyoD at E-Boxes located within ECRs alpha and beta correlates with the temporal induction in ms1 mRNA. CONCLUSION: These findings suggest that the tissue specific and differentiation dependent up-regulation in ms1 mRNA is mediated by temporal binding of MyoD at distinct evolutionary conserved E-Boxes within the ms1 5' upstream sequence. We believe, through its activation of ms1, this is the first study to demonstrate a direct link between MyoD activity and SRF transcriptional signalling, with clear implications for the understanding of muscle determination, differentiation and regeneration.


Asunto(s)
Biología Computacional , Desarrollo de Músculos , Proteínas Musculares/genética , Proteína MioD/metabolismo , Regiones Promotoras Genéticas , Animales , Sitios de Unión , Redes Reguladoras de Genes , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Células 3T3 NIH
15.
J Thorac Dis ; 9(Suppl 1): S5-S8, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28446963

RESUMEN

Mammalian genomes are pervasively transcribed generating thousands of long noncoding RNAs (lncRNAs) with emergent regulatory roles. Many of these lncRNAs exhibit highly specialised expression patterns during development and typically flank and regulate key developmental factors. In this review, we discuss and summarise the latest advances in our understanding of the roles of lncRNAs during mesendoderm (ME) specification, a key step during gastrulation and the formation of the primitive streak (PS).

17.
Sci Transl Med ; 9(395)2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637928

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer-associated RNA) as a cardiac fibroblast-enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast-enriched super-enhancer-associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart.


Asunto(s)
Cardiomiopatías/genética , ARN Largo no Codificante/genética , Cardiomiopatías/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/genética , Fibrosis/patología , Humanos , ARN Largo no Codificante/fisiología , Remodelación Ventricular
18.
Nat Commun ; 8(1): 1806, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180618

RESUMEN

Enhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification during development. Here, we evaluate remodeling of the enhancer landscape and modulation of the lncRNA transcriptome during mesendoderm specification. We sort mesendodermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes expression, and find that enhancer usage is coordinated with mesendoderm-specific expression of key lineage-determining transcription factors. Many of these enhancers are associated with the expression of lncRNAs. Examination of ESC-specific enhancers interacting in three-dimensional space with mesendoderm-specifying transcription factor loci identifies MesEndoderm Transcriptional Enhancer Organizing Region (Meteor). Genetic and epigenetic manipulation of the Meteor enhancer reveal its indispensable role during mesendoderm specification and subsequent cardiogenic differentiation via transcription-independent and -dependent mechanisms. Interestingly, Meteor-deleted ESCs are epigenetically redirected towards neuroectodermal lineages. Loci, topologically associating a transcribed enhancer and its cognate protein coding gene, appear to represent therefore a class of genomic elements controlling developmental competence in pluripotency.


Asunto(s)
Ectodermo/fisiología , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos/fisiología , Mesodermo/fisiología , ARN Largo no Codificante/fisiología , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Ectodermo/citología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Mesodermo/citología , Ratones , Placa Neural/citología , Placa Neural/fisiología
19.
Cell Stem Cell ; 18(5): 561-2, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152437

RESUMEN

Long noncoding RNAs (lncRNAs) comprise a class of regulatory molecules that may control diverse stem cell properties. Now in Cell Stem Cell, Luo et al. (2016) show that a specific group of lncRNAs, those transcribed divergently from protein coding genes, activate key developmental genes to control embryonic stem cell fate.


Asunto(s)
Diferenciación Celular , ARN Largo no Codificante/genética , Células Madre Embrionarias
20.
Cardiovasc Res ; 110(1): 73-84, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26857418

RESUMEN

AIMS: The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. METHODS AND RESULTS: Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. CONCLUSIONS: This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart.


Asunto(s)
Proliferación Celular/genética , Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , Cicatrización de Heridas/genética , Animales , Ciclo Celular , Perfilación de la Expresión Génica/métodos , Ratones Endogámicos C57BL , MicroARNs/genética , Miocitos Cardíacos/fisiología , Regeneración , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA