Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cytokine ; 164: 156137, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773528

RESUMEN

Host immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines. This study investigates host regulatory cytokines and immunogenomic factors associated with the clearance of Plasmodium falciparum carrying a chloroquine resistance genotype. Biological samples from participants of previous drug efficacy trials conducted in two Malian localities were retrieved. The P. falciparum chloroquine resistance transporter (Pfcrt) gene was genotyped using parasite DNA. Children carrying parasites with the mutant allele (Pfcrt-76T) were classified based on their ability to clear their parasites. The levels of the different cytokines were measured in serum. The polymorphisms of specific human genes involved in malaria susceptibility were genotyped using human DNA. The prevalence of the Pfcrt-76T was significantly higher in Kolle than in Bandiagara (81.6 % vs 38.6 %, p < 10-6). The prevalence of children who cleared their mutant parasites was significantly higher in Bandiagara than in Kolle (82.2 % vs 67.4 %, p < 0.05). The genotyping of host genes revealed that IFN-γ -874 T and TNF-α -308A alleles were positively associated with parasite clearance. Cytokine profiling revealed that IFN-γ level was positively associated with parasite clearance (p = 0.04). This study highlights the role of host's immunity and immunogenetic factors to clear resistant parasites, suggesting further characterization of these polymorphisms may help to develop novel approaches to antiparasitic treatment strategies.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Niño , Antimaláricos/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/uso terapéutico , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Cloroquina/farmacología , Malaria Falciparum/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/uso terapéutico , Malaria/tratamiento farmacológico
2.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321830

RESUMEN

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malaria Falciparum/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico
3.
Proc Natl Acad Sci U S A ; 113(41): 11567-11572, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663739

RESUMEN

Toxoplasma gondii is an intracellular parasite that causes disseminated infections in fetuses and immunocompromised individuals. Although gene regulation is important for parasite differentiation and pathogenesis, little is known about protein organization in the nucleus. Here we show that the fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in the nuclei of tachyzoites, bradyzoites, and sporozoites but not oocysts. AAL also binds to Hammondia and Neospora nuclei but not to more distantly related apicomplexans. Analyses of the AAL-enriched fraction indicate that AAL binds O-linked fucose added to Ser/Thr residues present in or adjacent to Ser-rich domains (SRDs). Sixty-nine Ser-rich proteins were reproducibly enriched with AAL, including nucleoporins, mRNA-processing enzymes, and cell-signaling proteins. Two endogenous SRDs-containing proteins and an SRD-YFP fusion localize with AAL to the nuclear membrane. Superresolution microscopy showed that the majority of the AAL signal localizes in proximity to nuclear pore complexes. Host cells modify secreted proteins with O-fucose; here we describe the O-fucosylation pathway in the nucleocytosol of a eukaryote. Furthermore, these results suggest O-fucosylation is a mechanism by which proteins involved in gene expression accumulate near the NPC.


Asunto(s)
Fucosa/metabolismo , Poro Nuclear/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular , Línea Celular , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilación , Humanos , Lectinas/metabolismo , Ratones , Membrana Nuclear/metabolismo , Polisacáridos/metabolismo , Dominios Proteicos , Proteínas Protozoarias/química , Especificidad de la Especie
4.
J Cell Sci ; 127(Pt 15): 3320-30, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24928899

RESUMEN

Unlike most cells, protozoa in the phylum Apicomplexa divide by a distinctive process in which multiple daughters are assembled within the mother (schizogony or endodyogeny), using scaffolding known as the inner membrane complex (IMC). The IMC underlies the plasma membrane during interphase, but new daughters develop in the cytoplasm, as cytoskeletal filaments associate with flattened membrane cisternae (alveolae), which elongate rapidly to encapsulate subcellular organelles. Newly assembled daughters acquire their plasma membrane as they emerge from the mother, leaving behind vestiges of the maternal cell. Although the maternal plasma membrane remains intact throughout this process, the maternal IMC disappears - is it degraded, or recycled to form the daughter IMC? Exploiting fluorescently tagged IMC markers, we have used live-cell imaging, fluorescence recovery after photobleaching (FRAP) and mEos2 photoactivation to monitor the dynamics of IMC biogenesis and turnover during the replication of Toxoplasma gondii tachyzoites. These studies reveal that the formation of the T. gondii IMC involves two distinct steps - de novo assembly during daughter IMC elongation within the mother cell, followed by recycling of maternal IMC membranes after the emergence of daughters from the mother cell.


Asunto(s)
División Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Células Cultivadas , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Unión Proteica , Imagen de Lapso de Tiempo
5.
Science ; 384(6695): eadj4088, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696552

RESUMEN

The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.


Asunto(s)
Eritrocitos , Malaria Falciparum , Plasmodium falciparum , Desarrollo Sexual , Humanos , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Desarrollo Sexual/genética , Análisis de la Célula Individual , Transcriptoma , Atlas como Asunto
6.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630530

RESUMEN

Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.

7.
Trop Med Infect Dis ; 8(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37755899

RESUMEN

Up-to-date knowledge of key epidemiological aspects of each Plasmodium species is necessary for making informed decisions on targeted interventions and control strategies to eliminate each of them. This study aims to describe the epidemiology of plasmodial species in Mali, where malaria is hyperendemic and seasonal. Data reports collected during high-transmission season over six consecutive years were analyzed to summarize malaria epidemiology. Malaria species and density were from blood smear microscopy. Data from 6870 symptomatic and 1740 asymptomatic participants were analyzed. The median age of participants was 12 years, and the sex ratio (male/female) was 0.81. Malaria prevalence from all Plasmodium species was 65.20% (95% CI: 60.10-69.89%) and 22.41% (CI: 16.60-28.79%) for passive and active screening, respectively. P. falciparum was the most prevalent species encountered in active and passive screening (59.33%, 19.31%). This prevalence was followed by P. malariae (1.50%, 1.15%) and P. ovale (0.32%, 0.06%). Regarding frequency, P. falciparum was more frequent in symptomatic individuals (96.77% vs. 93.24%, p = 0.014). In contrast, P. malariae was more frequent in asymptomatic individuals (5.64% vs. 2.45%, p < 0.001). P. ovale remained the least frequent species (less than 1%), and no P. vivax was detected. The most frequent coinfections were P. falciparum and P. malariae (0.56%). Children aged 5-9 presented the highest frequency of P. falciparum infections (41.91%). Non-falciparum species were primarily detected in adolescents (10-14 years) with frequencies above 50%. Only P. falciparum infections had parasitemias greater than 100,000 parasites per µL of blood. P. falciparum gametocytes were found with variable prevalence across age groups. Our data highlight that P. falciparum represented the first burden, but other non-falciparum species were also important. Increasing attention to P. malariae and P. ovale is essential if malaria elimination is to be achieved.

8.
Biol Open ; 11(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972051

RESUMEN

Structural biology is an essential tool for understanding the molecular basis of diseases, which can guide the rational design of new drugs, vaccines, and the optimisation of existing medicines. However, most African countries do not conduct structural biology research due to limited resources, lack of trained persons, and an exodus of skilled scientists. The most urgent requirement is to build on the emerging centres in Africa - some well-established, others growing. This can be achieved through workshops that improve networking, grow skills, and develop mechanisms for access to light source beamlines for defining X-ray structures across the continent. These would encourage the growth of structural biology, which is central to understanding biological functions and developing new antimicrobials and other drugs. In this light, a hands-on training workshop in structural biology series 4 was organised by BioStruct-Africa and the Malaria Research and Training Center (MRTC) in Bamako, Mali, to help bridge this gap. The workshop was hosted by MRTC from the 25th to 28th of April 2022. Through a series of lectures and practicals, the workshop enlightened the participants on how structural biology can be utilised to find solutions to the prevalent diseases in Africa. The short training gave them an overview of target selection, protein production and purification, structural determination techniques, and analysis in combination with high-throughput, structure-guided, fragment-based drug design.


Asunto(s)
Biología , Desarrollo Sostenible , África , Humanos
9.
Front Microbiol ; 11: 246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194521

RESUMEN

Plasmodium falciparum remains one of the leading causes of child mortality, and nearly half of the world's population is at risk of contracting malaria. While pathogenesis results from replication of asexual forms in human red blood cells, it is the sexually differentiated forms, gametocytes, which are responsible for the spread of the disease. For transmission to succeed, both mature male and female gametocytes must be taken up by a female Anopheles mosquito during its blood meal for subsequent differentiation into gametes and mating inside the mosquito gut. Observed circulating numbers of gametocytes in the human host are often surprisingly low. A pre-fertilization behavior, such as skin sequestration, has been hypothesized to explain the efficiency of human-to-mosquito transmission but has not been sufficiently tested due to a lack of appropriate tools. In this study, we describe the optimization of a qPCR tool that enables the relative quantification of gametocytes within very small input samples. Such a tool allows for the quantification of gametocytes in different compartments of the host and the vector that could potentially unravel mechanisms that enable highly efficient malaria transmission. We demonstrate the use of our gametocyte quantification method in mosquito blood meals from both direct skin feeding on Plasmodium gametocyte carriers and standard membrane feeding assay. Relative gametocyte abundance was not different between mosquitoes fed through a membrane or directly on the skin suggesting that there is no systematic enrichment of gametocytes picked up in the skin.

10.
Malar J ; 8: 34, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19245687

RESUMEN

BACKGROUND: To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria. METHODS: During the malaria transmission seasons of 2002 and 2003, 455 children--between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. In vivo outcomes were assessed using WHO standard protocols. Genotyping of msp1, msp2 and CA1 polymorphisms were used to distinguish reinfection from recrudescent parasites (molecular correction). RESULTS: Day 28 adequate clinical and parasitological responses (ACPR) were 14.1%, 62.3% and 88.9% in 2002 and 18.2%, 60% and 85.2% in 2003 for chloroquine, amodiaquine and sulphadoxine-pyrimethamine, respectively. After molecular correction, ACPRs (cACPR) were 63.2%, 88.5% and 98.0% in 2002 and 75.5%, 85.2% and 96.6% in 2003 for CQ, AQ and SP, respectively. Amodiaquine was the most effective on fever. Amodiaquine therapy selected molecular markers for chloroquine resistance, while in the sulphadoxine-pyrimethamine arm the level of dhfr triple mutant and dhfr/dhps quadruple mutant increased from 31.5% and 3.8% in 2002 to 42.9% and 8.9% in 2003, respectively. No infection with dhps 540E was found. CONCLUSION: In this study, treatment with sulphadoxine-pyrimethamine emerged as the most efficacious on uncomplicated falciparum malaria followed by amodiaquine. The study demonstrated that sulphadoxine-pyrimethamine and amodiaquine were appropriate partner drugs that could be associated with artemisinin derivatives in an artemisinin-based combination therapy.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Cloroquina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Amodiaquina/administración & dosificación , Animales , Antígenos de Protozoos/genética , Antimaláricos/administración & dosificación , Niño , Preescolar , Cloroquina/administración & dosificación , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Femenino , Genes Protozoarios , Marcadores Genéticos , Genotipo , Humanos , Lactante , Malaria Falciparum/parasitología , Masculino , Malí , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Proteínas Protozoarias/genética , Pirimetamina/administración & dosificación , Sulfadoxina/administración & dosificación , Resultado del Tratamiento
11.
Am J Trop Med Hyg ; 78(3): 455-61, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18337343

RESUMEN

We conducted a randomized single-blinded trial comparing the efficacy and safety of artesunate (AS) + amodiaquine (AQ, 3 days) versus AS (3 days) + sulfadoxine-pyrimethamine (SP, single dose) versus AS monotherapy (5 days) in Southern Mali. Uncomplicated malaria cases were followed for 28 days. Molecular markers of drug resistance were determined. After identification of recrudescences by genotyping, both artemisinin-based combination therapies (ACTs) reached nearly 100% efficacy at Day 14 and Day 28 versus 98.3% and 96.5% for AS, respectively (P > 0.05). AS + SP significantly selected DHFR and DHPS mutations associated with sulfadoxine and pyrimethamine resistance (P < 0.001), and AS + AQ equally selected PfCRT and PfMDR1 point mutations associated with chloroquine and AQ resistance (P < 0.001). No significant adverse event attributable to any of the study drugs was found. The ACTs were efficacious and safe, but the selection of markers for resistance to the partner drugs raises concerns over their lifespan in areas of intense malaria transmission.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , Pirimetamina/uso terapéutico , Sesquiterpenos/uso terapéutico , Sulfadoxina/uso terapéutico , Amodiaquina/administración & dosificación , Amodiaquina/efectos adversos , Animales , Artemisininas/administración & dosificación , Artemisininas/efectos adversos , Artesunato , Biomarcadores/análisis , Combinación de Medicamentos , Quimioterapia Combinada , Humanos , Malaria Falciparum/epidemiología , Malí/epidemiología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Pirimetamina/administración & dosificación , Pirimetamina/efectos adversos , Sesquiterpenos/administración & dosificación , Sesquiterpenos/efectos adversos , Sulfadoxina/administración & dosificación , Sulfadoxina/efectos adversos , Factores de Tiempo , Vómitos/inducido químicamente
12.
Afr J Lab Med ; 7(2): 784, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568901

RESUMEN

BACKGROUND: Most malaria-endemic countries use artemisinin-based combination therapy (ACT) as their first-line treatment. ACTs are known to be highly effective on asexual stages of the malaria parasite. Malaria transmission and the spread of resistant parasites depend on the infectivity of gametocytes. The effect of the current ACT regimens on gametocyte infectivity is unclear. OBJECTIVES: This study aimed to determine the infectivity of gametocytes to Anopheles gambiae following ACT treatment in the field. METHODS: During a randomised controlled trial in Bougoula-Hameau, Mali, conducted from July 2005 to July 2007, volunteers with uncomplicated malaria were randomised to receive artemether-lumefantrine, artesunate-amodiaquine, or artesunate-sulfadoxine/pyrimethamine. Volunteers were followed for 28 days, and gametocyte carriage was assessed. Direct skin feeding assays were performed on gametocyte carriers before and after ACT administration. RESULTS: Following artemether-lumefantrine treatment, gametocyte carriage decreased steadily from Day 0 to Day 21 post-treatment initiation. In contrast, for the artesunate-amodiaquine and artesunate-sulfadoxine/pyrimethamine arms, gametocyte carriage increased on Day 3 and remained constant until Day 7 before decreasing afterward. Mosquito feeding assays showed that artemether-lumefantrine and artesunate-amodiaquine significantly increased gametocyte infectivity to Anopheles gambiae sensu lato (s.l.) (p < 10-4), whereas artesunate-sulfadoxine/pyrimethamine decreased gametocyte infectivity in this setting (p = 0.03). CONCLUSION: Different ACT regimens could lead to gametocyte populations with different capacity to infect the Anopheles vector. Frequent assessment of the effect of antimalarials on gametocytogenesis and gametocyte infectivity may be required for the full assessment of treatment efficacy, the potential for spread of drug resistance and malaria transmission in the field.

14.
Parasite ; 23: 3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26839003

RESUMEN

Artemisinin-based combination therapies decrease Plasmodium gametocyte carriage. However, the role of artesunate in monotherapy in vivo, the mechanisms involved, and the utility of gametocyte carriage as a potential tool for the surveillance of antimalarial resistance are poorly understood. In 2010-2011, we conducted an open-label, prospective efficacy study of artesunate as monotherapy in children 1-10 years of age with uncomplicated falciparum malaria in Bougoula-Hameau, Mali. Standard oral doses of artesunate were administered for 7 days and patients were followed up for 28 days. The data were compared to a similar study conducted in 2002-2004. Of 100 children enrolled in the 2010-2011 study, 92 were analyzed and compared to 217 children enrolled in the 2002-2004 study. The proportion of gametocyte carriers was unchanged at the end of treatment (23% at baseline vs. 24% on day 7, p = 1.0) and did not significantly decline until day 21 of follow-up (23% vs. 6%, p = 0.003). The mean gametocyte density at inclusion remained unchanged at the end of treatment (12 gametocytes/µL vs. 16 gametocytes/µL, p = 0.6). Overall, 46% of the 71 initial non-carriers had gametocytes detected by day 7. Similar results were found in the 2002-2004 study. In both studies, although gametocyte carriage significantly decreased by the end of the 28-day follow-up, artesunate did not clear mature gametocytes during treatment and did not prevent the appearance of new stage V gametocytes as assessed by light microscopy. Baseline gametocyte carriage was significantly higher 6 years after the deployment of artemisinin-based combination therapies in this setting.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Portador Sano/tratamiento farmacológico , Células Germinativas/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/uso terapéutico , Artesunato , Niño , Preescolar , Resistencia a Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Malí/epidemiología , Parasitemia/epidemiología , Parasitemia/parasitología , Estudios Prospectivos , Método Simple Ciego
15.
J Parasitol ; 99(2): 371-4, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22924926

RESUMEN

The protozoan parasite Toxoplasma gondii is globally distributed, with considerable local variation in prevalence based on behavioral and environmental factors. To assess prevalence and estimate risk in Mali, we conducted a survey of 760 serum samples previously collected for malaria studies. A modified agglutination test detected antibodies in ∼27% of the adult population, with no significant differences between men and women, or between urban and rural study sites. In the village of Kolle, seroprevalence rose from 0% in infants (<1 yr, but after weaning of maternal immunoglobulin G) to 0.8% (1-5 yr), 2.7% (6-10), 11.3% (11-15), and 26.8% (>15); differences between the <10-, 11-15-, and >15-yr age groups were highly significant (P ≤ 0.01). We also observed an increase in anti- T. gondii antibody titers with age. Modeling the observed age distribution suggests a seroconversion rate of ∼1%/yr, indicating that congenital toxoplasmosis may be an under-appreciated public health concern in Mali.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Complicaciones Parasitarias del Embarazo/epidemiología , Toxoplasma/inmunología , Toxoplasmosis/epidemiología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Malí/epidemiología , Embarazo , Estudios Seroepidemiológicos , Toxoplasmosis Congénita/epidemiología , Adulto Joven
16.
Curr Opin Microbiol ; 16(4): 424-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23932202

RESUMEN

The economic and clinical significance of apicomplexan parasites drives interest in their many evolutionary novelties. Distinctive intracellular organelles play key roles in parasite motility, invasion, metabolism, and replication, and understanding their relationship with the organelles of better-studied eukaryotic systems suggests potential targets for therapeutic intervention. Recent work has demonstrated divergent aspects of canonical eukaryotic components in the Apicomplexa, including Golgi bodies and mitochondria. The apicoplast is a relict plastid of secondary endosymbiotic origin, harboring metabolic pathways distinct from those of host species. The inner membrane complex (IMC) is derived from the cortical alveoli defining the superphylum Alveolata, but in apicomplexans functions in parasite motility and replication. Micronemes and rhoptries are associated with establishment of the intracellular niche, and define the apical complex for which the phylum is named. Morphological, cell biological and molecular evidence strongly suggest that these organelles are derived from the endocytic pathway.


Asunto(s)
Apicomplexa/genética , Evolución Molecular , Orgánulos/genética , Apicomplexa/fisiología , Orgánulos/fisiología
17.
Int J Parasitol ; 40(10): 1213-20, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20460125

RESUMEN

Sulfadoxine-pyrimethamine (SP) treatment increases the rate of gametocyte carriage and selects SP resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), raising concerns of increased malaria transmission and spread of drug resistance. In a setting in Mali where SP was highly efficacious, we measured the prevalence of DHFR and DHPS mutations in P. falciparum infections with microscopy-detected gametocytes following SP treatment, and used direct feeding to assess infectivity to Anopheles gambiae sensu lato. Children and young adults presenting with uncomplicated malaria were treated with SP or chloroquine and followed for 28 days. Gametocyte carriage peaked at 67% 1 week after treatment with a single dose of SP. Those post-SP gametocytes carried significantly more DHFR and DHPS mutations than pre-treatment asexual parasites from the same population. Only 0.5% of 1728 mosquitoes fed on SP-treated gametocyte carriers developed oocysts, while 11% of 198 mosquitoes fed on chloroquine-treated gametocyte carriers were positive for oocysts. This study shows that in an area of high SP efficacy, although SP treatment sharply increased gametocyte carriage, the infectiousness of these gametocytes to the vector may be very low. Accurate and robust methods for measuring infectivity are needed to guide malaria control interventions that affect transmission.


Asunto(s)
Anopheles/parasitología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Animales , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo , Combinación de Medicamentos , Regulación Enzimológica de la Expresión Génica , Humanos , Malaria Falciparum/epidemiología , Malí/epidemiología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
18.
FEMS Immunol Med Microbiol ; 58(1): 113-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20041947

RESUMEN

Plasmodium falciparum chloroquine resistance (CQR) transporter point mutation (PfCRT 76T) is known to be the key determinant of CQR. Molecular detection of PfCRT 76T in field samples may be used for the surveillance of CQR in malaria-endemic countries. The genotype-resistance index (GRI), which is obtained as the ratio of the prevalence of PfCRT 76T to the incidence of CQR in a clinical trial, was proposed as a simple and practical molecular-based addition to the tools currently available for monitoring CQR in the field. In order to validate the GRI model across populations, time, and resistance patterns, we compiled data from the literature and generated new data from 12 sites across Mali. We found a mean PfCRT 76T mutation prevalence of 84.5% (range 60.9-95.1%) across all sites. CQR rates predicted from the GRI model were extrapolated onto a map of Mali to show the patterns of resistance throughout the participating regions. We present a comprehensive map of CQR in Mali, which strongly supports recent changes in drug policy away from chloroquine.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/epidemiología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/efectos de los fármacos , Vigilancia de la Población/métodos , Proteínas Protozoarias/genética , Animales , ADN Protozoario/análisis , Humanos , Malaria Falciparum/tratamiento farmacológico , Malí/epidemiología , Mutación , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa/métodos , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA