Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(2): C529-C539, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145294

RESUMEN

Increases in myofiber extracellular potassium with prolonged contractile activity can potentiate twitch force. Activity-dependent potentiation, another mechanism of force increase in skeletal muscle, has a strong dependence on muscle or sarcomere length. Thus, potassium-mediated twitch potentiation could also be length-dependent. However, this has not been previously investigated. To this end, we used isolated C57BL/6 mouse extensor digitorum longus (EDL) muscles and elicited twitches at 0.9 Lo, Lo, and 1.1 Lo (Lo refers to optimal length) in normal (5 mM) and high (10 mM) potassium solutions. Potentiation magnitude was similar to previous observations and was not significantly different between lengths (0.9 Lo: 12.3 ± 4.4%, Lo: 12.2 ± 3.6%, 1.1 Lo: 11.8 ± 4.8%, values are means ± SD). Exposure to dantrolene sodium, a compound that attenuates calcium release, reduced twitch force across lengths by ∼70%. When dantrolene-affected muscles were subsequently exposed to high potassium, potentiation was similar to that observed in the absence of the former. In total, these findings provide novel information on potassium-mediated twitch potentiation.NEW & NOTEWORTHY Here, we investigated the length-dependence of twitch force potentiation by extracellular potassium in mouse extensor digitorum longus (EDL) in vitro, at 25°C. Potentiation magnitude did not display a statistically significant difference between the examined muscle lengths. These results describe, for the first time, the relationship of this form of potentiation with muscle length, thus furthering the understanding of how it is integrated in in vivo muscle function.


Asunto(s)
Músculo Esquelético , Potasio , Ratones , Animales , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Sarcómeros
2.
J Physiol ; 602(12): 2807-2822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762879

RESUMEN

Piperine has been shown to bind to myosin and shift the distribution of conformational states of myosin molecules from the super-relaxed state to the disordered relaxed state. However, little is known about the implications for muscle force production and potential underlying mechanisms. Muscle contractility experiments were performed using isolated muscles and single fibres from rats and mice. The dose-response effect of piperine on muscle force was assessed at several stimulation frequencies. The potentiation of muscle force was also tested in muscles fatigued by eccentric contractions. Potential mechanisms of force potentiation were assessed by measuring Ca2+ levels during stimulation in enzymatically dissociated muscle fibres, while myofibrillar Ca2+ sensitivity was assessed in chemically skinned muscle fibres. Piperine caused a dose-dependent increase in low-frequency force with no effect on high-frequency force in both slow- and fast-twitch muscle, with similar relative increases in twitch force, rate of force development and relaxation rate. The potentiating effect of piperine on low-frequency force was reversible, and piperine partially recovered low-frequency force in fatigued muscle. Piperine had no effect on myoplasmic free [Ca2+] levels in mouse muscle fibres, whereas piperine substantially augmented the force response to submaximal levels of [Ca2+] in rat MyHCII fibres and MyHCI fibres along with a minor increase in maximum Ca2+-activated force. Piperine enhances low-frequency force production in both fast- and slow-twitch muscle. The effects are reversible and can counteract muscle fatigue. The primary underlying mechanism appears to be an increase in Ca2+ sensitivity. KEY POINTS: Piperine is a plant alkaloid derived from black pepper. It is known to bind to skeletal muscle myosin and enhance resting ATP turnover but its effects on contractility are not well known. We showed for the first time a piperine-induced force potentiation that was pronounced during low-frequency electrical stimulation of isolated muscles. The effect of piperine was observed in both slow and fast muscle types, was reversible, and could counteract the force decrements observed after fatiguing muscle contractions. Piperine treatment caused an increase in myofibrillar Ca2+ sensitivity in chemically skinned muscle fibres, while we observed no effect on intracellular Ca2+ concentrations during electrical stimulation in enzymatically dissociated muscle fibres.


Asunto(s)
Alcaloides , Benzodioxoles , Calcio , Contracción Muscular , Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Piperidinas , Alcamidas Poliinsaturadas , Animales , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcaloides/farmacología , Ratones , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/fisiología , Ratas , Contracción Muscular/efectos de los fármacos , Masculino , Calcio/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/fisiología , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga
3.
Eur J Appl Physiol ; 124(3): 681-751, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38206444

RESUMEN

This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.


Asunto(s)
Ouabaína , ATPasa Intercambiadora de Sodio-Potasio , Humanos , Ratas , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/metabolismo , Músculo Esquelético/metabolismo , Contracción Muscular , Hormonas/metabolismo , Isoformas de Proteínas/metabolismo , Iones/metabolismo
4.
Am J Physiol Endocrinol Metab ; 325(6): E700-E710, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877795

RESUMEN

Intramuscular lipids are stored as subsarcolemmal or intramyofibrillar droplets with potential diverse roles in energy metabolism. We examined intramuscular lipid utilization through transmission electron microscopy during repeated high-intensity intermittent exercise, an aspect that is hitherto unexplored. Seventeen moderately to well-trained males underwent three periods (EX1-EX3) of 10 × 45-s high-intensity cycling [∼100%-120% Wattmax (Wmax)] combined with maximal repeated sprints (∼250%-300% Wmax). M. vastus lateralis biopsies were obtained at baseline, after EX1, and EX3. During the complete exercise session, no net decline in either subsarcolemmal or intermyofibrillar lipid volume density occurred. However, a temporal relationship emerged for subsarcolemmal lipids with an ∼11% increase in droplet size after EX1 (P = 0.024), which reverted to baseline levels after EX3 accompanied by an ∼30% reduction in the numerical density of subsarcolemmal lipid droplets compared with both baseline (P = 0.019) and after EX1 (P = 0.018). Baseline distinctions were demonstrated with an approximately twofold higher intermyofibrillar lipid volume in type 1 versus type 2 fibers (P = 0.008), mediated solely by a higher number rather than the size of lipid droplets (P < 0.001). No fiber-type-specific differences were observed in subsarcolemmal lipid volume although type 2 fibers exhibited ∼17% larger droplets (P = 0.034) but a lower numerical density (main effect; P = 0.010) including 3% less droplets at baseline. Collectively, these findings suggest that intramuscular lipids do not serve as an important substrate during high-intensity intermittent exercise; however, the repeated exercise pattern mediated a temporal remodeling of the subsarcolemmal lipid pool. Furthermore, fiber-type- and compartment-specific differences were found at baseline underscoring the heterogeneity in lipid droplet deposition.NEW & NOTEWORTHY Undertaking a severe repeated high-intensity intermittent exercise protocol led to no net decline in neither subsarcolemmal nor intermyofibrillar lipid content in the thigh muscle of young moderately to well-trained participants. However, a temporal remodeling of the subsarcolemmal pool of lipid droplets did occur indicative of potential transient lipid accumulation. Moreover, baseline fiber-type distinctions in subcellular lipid droplet deposition were present underscoring the diversity in lipid droplet storage among fiber types and subcellular regions.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Gotas Lipídicas , Masculino , Humanos , Gotas Lipídicas/metabolismo , Músculo Esquelético/metabolismo , Músculo Cuádriceps/metabolismo , Lípidos , Metabolismo de los Lípidos/fisiología
5.
J Gastroenterol Hepatol ; 38(8): 1365-1371, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36740964

RESUMEN

BACKGROUND AND AIM: Physical activity confers health benefits in many diseases but remains almost unstudied for cirrhosis. We investigated whether a period of resistance training affects the subsequent long-term risk of hospitalization or mortality among patients with cirrhosis. METHODS: The study includes 39 participants with cirrhosis Child-Pugh class A/B who participated in a prior clinical trial randomized to either resistance training three times per week for 12 weeks or a control group. We gathered data through medical records from trial entry and the following 3 years. The outcomes were time to first hospitalization and all-cause mortality. We used regression models to examine the associations between trial groups and outcomes, adjusting for Child-Pugh class, age, gender, and comorbidity. RESULTS: Nine patients who trained and 15 controls were hospitalized, resulting in a lower risk of first hospitalization in the training group (adjusted subdistribution hazard ratio of 0.40, 95% confidence interval [CI] [0.17, 0.92]; P = 0.03). One patient who trained and six controls died, resulting in a lower all-cause mortality in the training group (adjusted hazard ratio of 0.06, 95% CI [0.01, 0.66]; P = 0.02). CONCLUSION: Twelve weeks of resistance training was associated with a reduced risk of first hospitalization and mortality among patients with cirrhosis Child-Pugh class A/B 3 years after trial entry. The mechanisms of this effect are not identified, and larger studies are warranted.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Estudios de Seguimiento , Cirrosis Hepática/complicaciones , Fibrosis , Hospitalización , Hospitales
6.
Arch Phys Med Rehabil ; 104(3): 444-450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36167118

RESUMEN

OBJECTIVE: To investigate (1) how current and pulse frequency of electrical stimulation (ES) as well as contraction mode (isometric, concentric, and eccentric) influence torque output and discomfort and (2) how familiarization by repeated ES sessions influences ratings of perceived discomfort. DESIGN: An experimental study, 3 sessions. SETTING: A university laboratory. PARTICIPANTS: Eight healthy participants (5 men, 3 women; mean age 25.2 years; N=8). INTERVENTIONS: Participants completed 3 trial days, each including 17 electrically evoked thigh muscle contractions. On each trial day, the first 6 contractions consisted of 2 isometric, 2 concentric, and 2 eccentric muscle contractions randomly ordered with a fixed stimulation current and pulse frequency (200 mA, 20 Hz), while the remaining 11 muscle contractions were all isometric with randomly ordered combinations of current (100-250 mA) and pulse frequency (20-100 Hz). MAIN OUTCOME MEASURES: Torque and perceived discomfort were measured for each ES-evoked contraction. RESULTS: Overall, the findings revealed that a higher stimulation frequency was associated with an increased torque without increased discomfort, while higher currents were associated with increases of both torque and discomfort. Contraction type did not influence level of discomfort, despite eccentric contractions eliciting higher torque compared with concentric and isometric contractions (P<.001). Finally, a significant familiarization to ES (P<.001) was observed after just 1 of 3 identical stimulation sessions. CONCLUSIONS: The outlined data suggest that to elicit high torque levels while minimizing levels of discomfort in young subjects, eccentric muscle contractions evoked with a low stimulation current, and a high pulse frequency are preferable. Furthermore, a single familiarization session significantly lowers rating of perceived discomfort during ES.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Torque , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Estimulación Eléctrica
7.
Scand J Med Sci Sports ; 33(12): 2457-2469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668421

RESUMEN

Despite the frequent occurrence of congested game fixtures in elite ice hockey, the postgame recovery pattern has not previously been investigated. The purpose of the present study was therefore to evaluate the acute decrements and subsequent recovery of skeletal muscle glycogen levels, muscle function and repeated-sprint ability following ice hockey game-play. Sixteen male players from the Danish U20 national team completed a training game with muscle biopsies obtained before, postgame and following ~38 h of recovery (day 2). On-ice repeated-sprint ability and muscle function (maximal voluntary isometric [MVIC] and electrically induced low- (20 Hz) and high-frequency (50 Hz) knee-extensor contractions) were assessed at the same time points, as well as ~20 h into recovery (day 1). Muscle glycogen decreased 31% (p < 0.001) postgame and had returned to pregame levels on day 2. MVIC dropped 11%, whereas 50 and 20 Hz torque dropped 21% and 29% postgame, respectively, inducing a 10% reduction in the 20/50 Hz torque ratio indicative of low-frequency force depression (all p < 0.001). While MVIC torque returned to baseline on day 1, 20 and 50 Hz torque remained depressed by 9%-11% (p = 0.010-0.040), hence restoring the pre-exercise 20/50 Hz ratio. Repeated-sprint ability was only marginally reduced by 1% postgame (p = 0.041) and fully recovered on day 1. In conclusion, an elite youth ice hockey game induces substantial reductions in muscle glycogen content and muscle function, but only minor reductions in repeated-sprint ability and with complete recovery of all parameters within 1-2 days postgame.


Asunto(s)
Hockey , Adolescente , Humanos , Masculino , Hockey/fisiología , Resistencia Física/fisiología , Músculo Esquelético
8.
Eur J Appl Physiol ; 123(11): 2345-2378, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37584745

RESUMEN

Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Fatiga Muscular/fisiología , Contracción Muscular/fisiología , Potenciales de Acción/fisiología , Iones/metabolismo , Adenosina Trifosfato/metabolismo
9.
Am J Physiol Cell Physiol ; 323(6): C1642-C1651, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317798

RESUMEN

Low-frequency fatigue (LFF) is defined by a relatively larger deficit in isometric force elicited by low-frequency electrical stimulation compared with high-frequency stimulation. However, the effects of LFF on power during dynamic contractions elicited at low and high frequencies have not been thoroughly characterized. In the current study, rat soleus muscles underwent fatiguing either concentric, eccentric, or isometric contractions. Before and 1 h after the fatiguing contractions, a series of brief isometric and dynamic contractions elicited at 20 and 80 Hz stimulation to establish force-velocity relationships. Maximal force (Fmax), velocity (Vmax), and power (Pmax) were assessed for each frequency. Sarcoplasmic reticulum (SR) Ca2+ release and reuptake rates were assessed pre- and postfatigue. Prolonged fatigue was observed as a loss of Fmax and Pmax in muscles fatigued by concentric or eccentric, but not by isometric contractions. When quantified as a decrease in the ratio between 20 Hz and 80 Hz contractile output, LFF was more pronounced for isometric force than for power (-21% vs. -16% for concentrically fatigued muscles, P = 0.003; 29 vs. 13% for eccentrically fatigued muscles, P < 0.001). No changes in SR Ca2+ release or reuptake rates were observed. We conclude that LFF is less pronounced when expressed in terms of power deficits than when expressed in terms of force deficits, and that LFF, therefore, likely affects performance to a lesser degree during fast concentric contractions than during static or slow contractions.


Asunto(s)
Contracción Isométrica , Fatiga Muscular , Ratas , Animales , Fatiga Muscular/fisiología , Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Estimulación Eléctrica , Fatiga
10.
Diabetologia ; 65(4): 620-631, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048156

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to evaluate the effects of progressive resistance training (PRT) on muscle strength, intraepidermal nerve fibre density (IENFD) and motor function in individuals with type 2 diabetic polyneuropathy (DPN) and to compare potential adaptations to those of individuals with type 2 diabetes without DPN and healthy controls. METHODS: This was an assessor-blinded trial conducted at the Neurology department, Aarhus University Hospital. Adults with type 2 diabetes, with and without DPN and healthy control participants were randomised to either supervised PRT or non-PRT for 12 weeks. Allocation was concealed by a central office unrelated to the study. The co-primary outcomes were muscle strength in terms of the peak torque of the knee and ankle extensors and flexors, and IENFD. Secondary outcome measures included the 6 min walk test (6MWT), five-time sit-to-stand test (FTSST) and postural stability index obtained by static posturography. RESULTS: A total of 109 individuals were enrolled in three groups (type 2 diabetes with DPN [n = 42], type 2 diabetes without DPN [n = 32] and healthy control [n = 35]). PRT resulted in muscle strength gains of the knee extensors and flexors in all three groups using comparative analysis (DPN group, PRT 10.3 ± 9.6 Nm vs non-PRT -0.4 ± 8.2 Nm; non-DPN group, PRT 7.5 ± 5.8 Nm vs non-PRT 0.6 ± 8.8 Nm; healthy control group, PRT 6.3 ± 9.0 Nm vs non-PRT -0.4 ± 8.4 Nm; p<0.05, respectively). Following PRT the DPN group improved the 6MWT (PRT 34.6 ± 40.9 m vs non-PRT 2.7 ± 19.6 m; p=0.001) and the FTSST (PRT -1.5 ± 2.2 s vs non-PRT 1.5 ± 4.6 s; p=0.02). There was no change in IENFD following PRT in any of the groups. CONCLUSIONS/INTERPRETATION: PRT improved muscle strength of the knee extensors and flexors and motor function in individuals with type 2 diabetic polyneuropathy at levels comparable with those seen in individuals with diabetes without DPN and healthy control individuals, while no effects were observed in IENFD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03252132 FUNDING: Research reported in this paper is part of the International Diabetic Neuropathy Consortium (IDNC) research programme, supported by a Novo Nordisk Foundation Challenge Program grant (grant no. NNF14OC0011633) and Aarhus University.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Entrenamiento de Fuerza , Adulto , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Neuropatías Diabéticas/terapia , Fuerza Muscular/fisiología , Entrenamiento de Fuerza/métodos
11.
J Physiol ; 600(21): 4713-4730, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030498

RESUMEN

Glycogen particles are situated in key areas of the muscle cell in the vicinity of the main energy-consumption sites and may be utilised heterogeneously dependent on the nature of the metabolic demands. The present study aimed to investigate the time course of fibre type-specific utilisation of muscle glycogen in three distinct subcellular fractions (intermyofibrillar, IMF; intramyofibrillar, Intra; and subsarcolemmal, SS) during repeated high-intensity intermittent exercise. Eighteen moderately to well-trained male participants performed three periods of 10 × 45 s cycling at ∼105% watt max (EX1-EX3) coupled with 5 × 6 s maximal sprints at baseline and after each period. Muscle biopsies were sampled at baseline and after EX1 and EX3. A higher glycogen breakdown rate in type 2 compared to type 1 fibres was found during EX1 for the Intra (-72 vs. -45%) and IMF (-59 vs. -35%) glycogen fractions (P < 0.001) but with no differences for SS glycogen (-52 vs. -40%). In contrast, no fibre type differences were observed during EX2-EX3, where the utilisation of Intra and IMF glycogen in type 2 fibres was reduced, resulting in depletion of all three subcellular fractions to very low levels post-exercise within both fibre types. Importantly, large heterogeneity in single-fibre glycogen utilisation was present with an early depletion of especially Intra glycogen in individual type 2 fibres. In conclusion, there is a clear fibre type- and localisation-specific glycogen utilisation during high-intensity intermittent exercise, which varies with time course of exercise and is characterised by exacerbated pool-specific glycogen depletion at the single-fibre level. KEY POINTS: Muscle glycogen is the major fuel during high-intensity exercise and is stored in distinct subcellular areas of the muscle cell in close vicinity to the main energy consumption sites. In the present study quantitative electron microscopy imaging was used to investigate the utilisation pattern of three distinct subcellular muscle glycogen fractions during repeated high-intensity intermittent exercise. It is shown that the utilisation differs dependent on fibre type, subcellular localisation and time course of exercise and with large single-fibre heterogeneity. These findings expand on our understanding of subcellular muscle glycogen metabolism during exercise and may help us explain how reductions in muscle glycogen can attenuate muscle function even at only moderately lowered whole-muscle glycogen concentrations.


Asunto(s)
Glucógeno , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino , Glucógeno/metabolismo , Músculos/metabolismo , Ejercicio Físico/fisiología , Ciclismo , Músculo Esquelético/fisiología
12.
Pflugers Arch ; 474(6): 637-646, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266019

RESUMEN

The influence of moderately elevated extracellular potassium concentration ([K+]) on muscle force has marked similarities to that of posttetanic potentiation (PTP) in that twitch force may be enhanced whilst high-frequency force is depressed. The purpose of this work was to test whether K+-induced potentiation is mechanistically related to PTP via skeletal myosin light-chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chains (RLC). To do this, we assessed the influence of elevated [K+] on the force response at various frequencies in extensor digitorum longus (EDL) muscles isolated from wild-type and skeletal myosin light-chain kinase (skMLCK-/-) absent mice. Changing [K+] of the incubation medium from 5 to 10 mmol increased isometric twitch force by a similar amount in wild-type and skMLCK-/- muscles (~ 13% in both genotypes) (all data n = 7-8, P < 0.05). In contrast, 100- and 200-Hz forces were depressed in both genotypes (by 5-7 and 15-18%, respectively). The isometric twitch potentiation caused by a tetanic stimulus series was similar at both [K+] levels for each genotype but was much greater for wild-type than for skMLCK-/- muscles (i.e., 23-25 and 8-9%, respectively). Thus, we conclude that [K+]- and stimulation-induced potentiation are additive and that [K+]-induced potentiation is independent of RLC phosphorylation.


Asunto(s)
Contracción Muscular , Potasio , Animales , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Cadenas Ligeras de Miosina , Fosforilación , Potasio/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-35351650

RESUMEN

Resistance exercise and protein ingestion stimulate muscle protein synthesis in mammals and the combination of both stimuli exert an additive effect. However, mechanisms regulating muscle mass may be different in ectothermic vertebrates because these animals are adapted to low energy consumption, short bouts of physical activity, and prolonged periods of inactivity. Here, we investigated the effects of administration of leucine and simulated resistance exercise induced by electrical stimulation (ES) on protein synthesis rate in isolated extensor digitorum longus muscle from golden geckos (Gekko badenii). Muscles were placed in Krebs-Ringer buffer equilibrated with O2 (97%) and CO2 (3%) at 30 °C. One muscle from each animal was subjected to one of three interventions: 1) administration of leucine (0.5 mM) at rest, 2) isometric contractions evoked by ES, or 3) a combination of contractions and leucine, while the contralateral muscle served as untreated control. The rate of protein synthesis was measured through pyromycin-labeling. Administration of leucine led to a 2.75 (±1.88)-fold rise in protein synthesis rate in inactive muscles, whereas isometric contractions had no effect (0.67 ± 0.37-fold). The combination of isometric contractions and leucine did not affect protein synthesis rate (1.02 ± 0.34-fold), suggesting that muscle contractions attenuated the positive influence of leucine. Our study identifies leucine as a potent positive regulator of muscle protein synthesis in golden geckos, but also demonstrates that muscle contraction is not. More studies should be conducted in other taxonomic groups of ectothermic vertebrates to identify whether this is a general pattern.


Asunto(s)
Lagartos , Animales , Leucina/metabolismo , Leucina/farmacología , Mamíferos , Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo
14.
Am J Physiol Cell Physiol ; 321(5): C884-C896, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613841

RESUMEN

Moderate elevations of extracellular K+ concentration ([K+]o) occur during exercise and have been shown to potentiate force during contractions elicited with subtetanic frequencies. Here, we investigated whether lactic acid (reduced chloride conductance), ß2-adrenoceptor activation, and increased temperature would influence the potentiating effect of potassium in slow- and fast-twitch muscles. Isometric contractions were elicited by electrical stimulation at various frequencies in isolated rat soleus and extensor digitorum longus (EDL) muscles incubated at normal (4 mM) or elevated K+, in combination with salbutamol (5 µM), lactic acid (18.1 mM), 9-anthracene-carboxylic acid (9-AC; 25 µM), or increased temperature (30-35°C). Elevating [K+]o from 4 mM to 7 mM (soleus) and 10 mM (EDL) potentiated isometric twitch and subtetanic force while slightly reducing tetanic force. In EDL, salbutamol further augmented twitch force (+27 ± 3%, P < 0.001) and subtetanic force (+22 ± 4%, P < 0.001). In contrast, salbutamol reduced subtetanic force (-28 ± 6%, P < 0.001) in soleus muscles. Lactic acid and 9-AC had no significant effects on isometric force of muscles already exposed to moderate elevations of [K+]o. The potentiating effect of elevated [K+]o was still well maintained at 35°C. Addition of salbutamol exerts a further force-potentiating effect in fast-twitch but not in slow-twitch muscles already potentiated by moderately elevated [K+]o, whereas lactic acid, 9-AC, or increased temperature does not exert any further augmentation. However, the potentiating effect of elevated [K+]o was still maintained in the presence of these, thus emphasizing the positive influence of moderately elevated [K+]o for contractile performance during exercise.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Albuterol/farmacología , Ácido Láctico/farmacología , Contracción Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Potasio/metabolismo , Receptores Adrenérgicos beta 2/efectos de los fármacos , Temperatura , Animales , Antracenos/farmacología , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Masculino , Músculo Esquelético/fisiología , Ratas Wistar , Receptores Adrenérgicos beta 2/metabolismo
15.
Diabet Med ; 38(9): e14470, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33259675

RESUMEN

AIM: To estimate the incidence of falls in individuals with type 2 diabetes compared to healthy controls and to describe the characteristics of fallers with type 2 diabetes in relation to motor dysfunction, postural instability and diabetic polyneuropathy (DPN). METHODS: This is a cross-sectional study of individuals with type 2 diabetes with DPN (n = 54), without DPN (n = 38) and healthy controls (n = 39). Falls were recorded within the preceding year. DPN was defined by clinical scores and nerve conduction studies. Motor function was assessed by a 6-min walk test (6 MWT), five-time sit-to-stand test (FTSST) and isokinetic dynamometry at the non-dominant ankle and knee. An instability index (ST) was measured using static posturography. Univariate and bivariate descriptive statistics were used for group comparisons. RESULTS: Compared with healthy controls, individuals with diabetes had a higher incidence of falls 36%, (n = 33) versus 15%, (n = 6), p = 0.02. There were no differences in falls when comparing individuals with and without DPN. Fallers had an impaired 6 MWT versus non-fallers (450 ± 153 m vs. 523 ± 97 m respectively), a slower FTSST (11.9 ± 4.2 s vs. 10.3 ± 2.9 s respectively) and a higher ST (53 ± 29 vs. 41 ± 17 respectively), p < 0.02 for all. CONCLUSION: Individuals with type 2 diabetes reported a higher number of falls within the preceding year compared to healthy controls, irrespective of the presence of DPN. The main factors associated with falls were increased postural instability, lower walking capacity and slower sit-to-stand movements. The 6 MWT, FTSST and posturography should be considered in future screening programs in identification of individuals at risk for falls.


Asunto(s)
Accidentes por Caídas/estadística & datos numéricos , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/complicaciones , Equilibrio Postural/fisiología , Caminata/fisiología , Anciano , Estudios Transversales , Dinamarca/epidemiología , Diabetes Mellitus Tipo 2/fisiopatología , Neuropatías Diabéticas/epidemiología , Neuropatías Diabéticas/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Examen Neurológico , Pronóstico , Estudios Retrospectivos
16.
Chron Respir Dis ; 18: 14799731211038673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34399604

RESUMEN

Objectives: Pulmonary rehabilitation (PR) is a key factor in enhancing self-management and exercise capacity in patients with chronic obstructive pulmonary disease (COPD). The content and length of PR varies between countries and authorities responsible for rehabilitation. After completion of rehabilitation, it is often difficult for patients to stay motivated and perform regular exercise. Methods: In this pilot study, nine patients with moderate to severe COPD completed a 6-week training programme consisting of free diving-inspired breathing techniques, designed to be incorporated into daily activities. Results: Participants significantly increased the distance walked in 6 min by 48 m (p < 0.05) and a significant reduction was seen on the COPD self-efficacy scale (p < 0.05). Furthermore, adherence to the programme sessions was very high at 96.3% and no adverse events occurred. Discussion: This pilot study tested the feasibility of introducing breathing techniques used by COPD patients to enhance their walking capacity. The techniques were well tolerated and participant's adherence to the weekly group sessions was high.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Ejercicio Físico , Terapia por Ejercicio , Tolerancia al Ejercicio , Humanos , Proyectos Piloto , Enfermedad Pulmonar Obstructiva Crónica/terapia , Calidad de Vida , Caminata
17.
Clin Gastroenterol Hepatol ; 18(5): 1179-1187.e6, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31394282

RESUMEN

BACKGROUND & AIMS: Cirrhosis is often complicated by reduced muscle mass and strength, which limits the ability to perform daily activities and affects quality of life. Resistance training can increase muscle strength and mass in elderly and chronically ill patients. We performed a randomized controlled trial to investigate whether resistance training increases muscle strength and size in patients with compensated cirrhosis. METHODS: We performed a prospective study of 39 patients with cirrhosis (Child-Pugh class A or B) seen at an outpatient clinic in Denmark from January 2015 through March 2017. Participants protein intake and activity levels were registered daily. Participants were randomly assigned (1:1) to a group that performed 36 1-hour sessions of physical exercise (supervised progressive resistance training for 1 hour, 3 times weekly for 12 weeks) or a control group (no change in daily activity level). Maximal muscle strength was measured as the peak torque in isokinetic knee extension and muscle size was measured as the cross-sectional area of the quadriceps muscle, assessed by magnetic resonance imaging of the thigh. RESULTS: The exercise group increased their muscle strength by 13% (from a mean 119 Nm to 134 Nm)-an 11 Nm greater gain in mean strength than that of the control group (P = .05). The exercise group increased their quadriceps cross-sectional area by 10% (from a mean 58.5 cm2 to 64.6 cm2)-a 4.4 cm2 greater gain than that of the control group (P < .01). The exercise group had significant increases in whole-body lean mass and body cell mass, and significant increases in 6-minute walking distance and the mental component summary of the short form-36 questionnaire. Adverse events were minor and equal between groups. CONCLUSIONS: In a randomized trial of patients with compensated cirrhosis, we found that 12 weeks of supervised progressive resistance training increased muscle strength and size and had beneficial effects on general performance measures, compared with patients who did not change their daily activity routine (control subjects). ClinicalTrials.gov no: NCT02343653.


Asunto(s)
Entrenamiento de Fuerza , Anciano , Humanos , Cirrosis Hepática , Fuerza Muscular , Estudios Prospectivos , Músculo Cuádriceps , Calidad de Vida
18.
J Strength Cond Res ; 34(12): 3369-3376, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33009345

RESUMEN

Vigh-Larsen, JF, Haverinen, MT, Panduro, J, Ermidis, G, Andersen, TB, Overgaard, K, Krustrup, P, Parkkari, J, Avela, J, Kyröläinen, H, and Mohr, M. On-ice and off-ice fitness profiles of elite and U20 male ice hockey players of two different national standards. J Strength Cond Res 34(12): 3369-3376, 2020-Differences in body composition and performance were investigated between elite and U20 male ice hockey players of 2 different national standards. One hundred seventy-nine players were recruited from the highest Finnish (n = 82) and Danish (n = 61) national level, as well as from 1 U20 team from Finland (n = 19) and Denmark (n = 17). Body composition and countermovement jump performance (CMJ) were measured off-ice in addition to on-ice assessments of agility, 10- and 30-m sprint performance, and endurance capacity (the maximal Yo-Yo Intermittent Recovery Level 1 Ice Hockey Test, Yo-Yo IR1-IHmax). Large differences in on-ice performances were demonstrated between Finnish and Danish elite players for agility, 10- and 30-m sprint performance (2-3%, P ≤ 0.05), and Yo-Yo IR1-IHmax performance (15%, P ≤ 0.05). By contrast, no differences (P > 0.05) were present between elite players for CMJ ability or body composition. However, elite players possessed more body and muscle mass than U20 players. Finally, the Finnish U20 cohort had a similar performance level as the Danish elite players and superior 10-m sprint performance, whereas the Danish U20 level was inferior to the other groups in every performance assessment (P ≤ 0.05). In conclusion, on-ice speed and endurance differ markedly between elite players of 2 different national standards with no distinction in body composition or CMJ ability. Moreover, the most consistent difference between U20 and senior elite players was related to body and muscle mass. These results highlight the usefulness of on-ice assessments and suggest the importance of on-ice high-intensity training in elite players in addition to training targeted the development of lean body mass in youth prospects.


Asunto(s)
Rendimiento Atlético , Hockey , Adolescente , Ejercicio Físico , Finlandia , Humanos , Masculino , Estándares de Referencia
19.
Am J Physiol Cell Physiol ; 317(1): C39-C47, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969780

RESUMEN

During dynamic contractions, high-frequency muscle activation is needed to achieve optimal power. This must be balanced against an increased excitation-induced accumulation of extracellular K+, which can reduce excitability and ultimately may prevent adequate responses to high-frequency activation. Mean activation frequencies in vivo are often low (subtetanic), but activation patterns contain bursts of high (supratetanic) frequencies known as doublets, which enhance dynamic contraction in rested muscles at normal extracellular K+ concentration ([K+]o). Here, we examine how dynamic contractions in fast-twitch fibers stimulated by high frequency/doublets are affected during exposure to 11 mM [K+]o and during fatigue. Dynamic contractions were elicited by electrical stimulation in isolated rat extensor digitorum longus muscles incubated at 4 or 11 mM K+. When stimulation frequency was maintained constant, an increase from 150 to 300 Hz enhanced maximal power (Pmax), maximal velocity (Vmax), and rate of force development (RFD) at 4 mM K+ but only Vmax at 11 mM K+. With the use of subtetanic frequency trains (50 Hz) with or without an initiating doublet (300 Hz), the addition of a doublet increased maximal force, Pmax, Vmax, and RFD at both 4 and 11 mM K+. Furthermore, a work-matched fatiguing protocol was performed comparing a doublet-initiated subtetanic train (DT) of 60 Hz with a constant-frequency train (CFT) of 71 Hz during 100 dynamic contractions. We found that DT produced higher power, velocity, and RFD than CFT throughout the fatiguing protocol. The results indicate that doublets enhance dynamic contraction in fast-twitch muscles stimulated at subtetanic frequency during both normal and fatiguing conditions.


Asunto(s)
Estimulación Eléctrica/métodos , Contracción Isométrica , Fatiga Muscular , Fuerza Muscular , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Potasio/metabolismo , Animales , Femenino , Masculino , Fibras Musculares de Contracción Rápida/metabolismo , Ratas Wistar , Factores de Tiempo
20.
Am J Physiol Cell Physiol ; 317(5): C900-C909, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411922

RESUMEN

The extracellular K+ concentration ([K+]o) increases during physical exercise. We here studied whether moderately elevated [K+]o may increase force and power output during contractions at in vivo-like subtetanic frequencies and whether such potentiation was associated with increased cytosolic free Ca2+ concentration ([Ca2+]i) during contractions. Isolated whole soleus and extensor digitorum longus (EDL) rat muscles were incubated at different levels of [K+]o, and isometric and dynamic contractility were tested at various stimulation frequencies. Furthermore, [Ca2+]i at rest and during contraction was measured along with isometric force in single mouse flexor digitorum brevis (FDB) fibers exposed to elevated [K+]o. Elevating [K+]o from 4 mM up to 8 mM (soleus) and 11 mM (EDL) increased isometric force at subtetanic frequencies, 2-15 Hz in soleus and up to 50 Hz in EDL, while inhibition was seen at tetanic frequency in both muscle types. Elevating [K+]o also increased peak power of dynamic subtetanic contractions, with potentiation being more pronounced in EDL than in soleus muscles. The force-potentiating effect of elevated [K+]o was transient in FDB single fibers, reaching peak after ~4 and 2.5 min in 9 and 11 mM [K+]o, respectively. At the time of peak potentiation, force and [Ca2+]i during 15-Hz contractions were significantly increased, whereas force was slightly decreased and [Ca2+]i unchanged during 50-Hz contractions. Moderate elevation of [K+]o can transiently potentiate force and power during contractions at subtetanic frequencies, which can be explained by a higher [Ca2+]i during contractions.


Asunto(s)
Calcio/metabolismo , Líquido Extracelular/metabolismo , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/metabolismo , Potasio/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA