Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biochem ; 277(1-2): 131-5, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16132724

RESUMEN

Isoniazid (INH) has neurotoxic effects such as seizure, poor concentration, subtle reduction in memory, anxiety, depression and psychosis. INH-induced toxic effects are thought to be through increased oxidative stress, and these effects have been shown to be prevented by antioxidant therapies in various organs. Increased oxidative stress may be playing a role in these neurotoxic effects. N-methyl D-aspartat receptors (NMDA) are a member of the ionotropic group of glutamate receptors. These receptors are involved in a wide variety of processes in the central nervous system including synaptogenesis, synaptic plasticity, memory and learning. Erdosteine is a potent antioxidant and mucolytic agent. We aimed to investigate adverse effects of INH on rat hippocampal NMDAR receptors, and to elucidate whether erdosteine prevents possible adverse effects of INH. In the present study, compared to control group, NMDAR2A (NR2A) receptors were significantly decreased and malondialdehyde (MDA), end product of lipid peroxidation, production was significantly increased in INH-treated group. On the other hand, administration of erdosteine to INH-treated group significantly increased NR2A receptors and decreased MDA production. In conclusion, decreasing NR2A receptors in hippocampus and increasing lipid peroxidation correlates with the degree of oxidative effects of INH and erdosteine protects above effect of INH on NR2A receptors and membrane damage due to lipid peroxidation by its antioxidant properties.


Asunto(s)
Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Isoniazida/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Tioglicolatos/farmacología , Tiofenos/farmacología , Animales , Antioxidantes/farmacología , Antituberculosos/toxicidad , Isoniazida/antagonistas & inhibidores , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Wistar
2.
J Pineal Res ; 33(4): 234-8, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12390506

RESUMEN

Myocardial ischemia-reperfusion (I/R) represents a clinically relevant problem associated with thrombolysis, angioplasty and coronary bypass surgery. I/R injury is believed to be a consequence of free radical generation in the heart especially during the period of reperfusion. The pineal secretory product, melatonin, is known to be a potent free radical scavenger and pharmacological concentrations have been shown to reduce the I/R-induced cardiac damage in isolated rat hearts. However, the physiological role of melatonin in the prevention of this damage is unknown. Rats were pinealectomized or sham-operated (control) 2 months before the I/R studies. To produce cardiac damage, the left main coronary artery was occluded for 30 min, followed by 120 min reperfusion, in anesthetized rats. Infarct size, expressed as the percentage of the risk zone, was found significantly higher in pinealectomized rats (49+/-3.4%) than in the control group (34+/-3.6%). Melatonin administration (4 mg/kg, either before ischemia or reperfusion) to pinealectomized rats significantly reduced the infarct size values and returned them to the control values. On the other hand, melatonin administration (4 mg/kg) to sham-operated rats failed to attenuate significantly the I/R-induced infarct size. These results suggest that physiological melatonin concentrations are important in reducing the I/R-induced myocyte damage, while pharmacological concentrations of melatonin did not add to the beneficial effect. As melatonin levels have been reported to decrease with age, melatonin replacement therapy may attenuate I/R-induced myocardial injury, especially in older patients.


Asunto(s)
Antioxidantes/uso terapéutico , Depuradores de Radicales Libres/uso terapéutico , Melatonina/uso terapéutico , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Glándula Pineal/fisiología , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA