Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ecol ; 29(4): 812-828, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31995648

RESUMEN

Disentangling the contribution of long-term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Here, we used 80 whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long-term isolation and/or more recent human-driven changes. Our results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov, maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long-term isolation argue for the restoration of lost population connectivity.


Asunto(s)
Evolución Biológica , Genoma/genética , Genómica , Lynx/genética , Animales , ADN Mitocondrial/genética , Ecosistema , Especies en Peligro de Extinción , Europa (Continente) , Flujo Genético , Humanos , Filogenia , Análisis de Secuencia de ADN
2.
J Environ Manage ; 260: 110068, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090812

RESUMEN

1. Primary objectives of national parks usually include both, the protection of natural processes and species conservation. When these objectives conflict, as occurs because of the cascading effects of large mammals (i.e., ungulates and large carnivores) on lower trophic levels, park managers have to decide upon the appropriate management while considering various local circumstances. 2. To analyse if ungulate management strategies are in accordance with the objectives defined for protected areas, we assessed the current status of ungulate management across European national parks using the naturalness concept and identified the variables that influence the management. 3. We collected data on ungulate management from 209 European national parks in 29 countries by means of a large-scale questionnaire survey. Ungulate management in the parks was compared by creating two naturalness scores. The first score reflects ungulate and large carnivore species compositions, and the second evaluates human intervention on ungulate populations. We then tested whether the two naturalness score categories are influenced by the management objectives, park size, years since establishment, percentage of government-owned land, and human impact on the environment (human influence index) using two generalized additive mixed models. 4. In 67.9% of the national parks, wildlife is regulated by culling (40.2%) or hunting (10.5%) or both (17.2%). Artificial feeding occurred in 81.3% of the national parks and only 28.5% of the national parks had a non-intervention zone covering at least 75% of the area. Furthermore, ungulate management differed greatly among the different countries, likely because of differences in hunting traditions and cultural and political backgrounds. Ungulate management was also influenced by park size, human impact on the landscape, and national park objectives, but after removing these variables from the full model the reduced models only showed a small change in the deviance explained. In areas with higher anthropogenic pressure, wildlife diversity tended to be lower and a higher number of domesticated species tended to be present. Human intervention (culling and artificial feeding) was lower in smaller national parks and when park objectives followed those set by the International Union for the Conservation of Nature (IUCN). 5. Our study shows that many European national parks do not fulfil the aims of protected area management as set by IUCN guidelines. In contrast to the USA and Canada, Europe currently has no common ungulate management policy within national parks. This lack of a common policy together with differences in species composition, hunting traditions, and cultural or political context has led to differences in ungulate management among European countries. To fulfil the aims and objectives of national parks and to develop ungulate management strategies further, we highlight the importance of creating a more integrated European ungulate management policy to meet the aims of national parks.


Asunto(s)
Conservación de los Recursos Naturales , Parques Recreativos , Animales , Canadá , Europa (Continente) , Humanos , Mamíferos
3.
PLoS One ; 19(3): e0297789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452124

RESUMEN

Rehabilitation of injured or immature individuals has become an increasingly used conservation and management tool. However, scientific evaluation of rehabilitations is rare, raising concern about post-release welfare as well as the cost-effectiveness of spending scarce financial resources. Over the past 20 years, events of juvenile Eurasian lynx presumably orphaned have been observed in many European lynx populations. To guide the management of orphaned lynx, we documented survival, rehabilitation and fate after the release and evaluated the potential relevance of lynx orphan rehabilitation for population management and conservation implications. Data on 320 orphaned lynx was collected from 1975 to 2022 from 13 countries and nine populations. The majority of orphaned lynx (55%) were taken to rehabilitation centres or other enclosures. A total of 66 orphans were released back to nature. The portion of rehabilitated lynx who survived at least one year after release was 0.66. Release location was the best predictor for their survival. Of the 66 released lynx, ten have reproduced at least once (8 females and 2 males). Conservation implications of rehabilitation programmes include managing genetic diversity in small, isolated populations and reintroducing species to historical habitats. The lynx is a perfect model species as most reintroduced populations in Central Europe show significantly lower observed heterozygosity than most of the autochthonous populations, indicating that reintroduction bottlenecks, isolation and post-release management have long-term consequences on the genetic composition of populations. The release of translocated orphans could be a valuable contribution to Eurasian lynx conservation in Europe. It is recommended to release orphans at the distribution edge or in the frame of reintroduction projects instead of a release in the core area of a population where it is not necessary from a demographic and genetic point of view. Rehabilitation programmes can have conservation implications that extend far beyond individual welfare benefits.


Asunto(s)
Lynx , Humanos , Masculino , Animales , Femenino , Lynx/genética , Europa (Continente) , Ecosistema , Centros de Rehabilitación
4.
Biology (Basel) ; 12(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759654

RESUMEN

Nowadays, genetic research methods play an important role in animal population studies. Since 2009, genetic material from Latvian wolf specimens obtained through hunting has been systematically gathered. This study, spanning until 2021, scrutinizes the consequences of regulated wolf hunting on population genetic metrics, kinship dynamics, and social organization. We employed 16 autosomal microsatellites to investigate relationships between full siblings and parent-offspring pairs. Our analysis encompassed expected and observed heterozygosity, inbreeding coefficients, allelic diversity, genetic distance and differentiation, mean pairwise relatedness, and the number of migrants per generation. The Latvian wolf population demonstrated robust genetic diversity with minimal inbreeding, maintaining stable allelic diversity and high heterozygosity over time and it is not fragmented. Our findings reveal the persistence of conventional wolf pack structures and enduring kinship groups. However, the study also underscores the adverse effects of intensified hunting pressure, leading to breeder loss, pack disruption, territorial displacement, and the premature dispersal of juvenile wolves.

5.
Evol Appl ; 16(11): 1773-1788, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38029067

RESUMEN

Local adaptations to the environment are an important aspect of the diversity of a species and their discovery, description and quantification has important implications for the fields of taxonomy, evolutionary and conservation biology. In this study, we scan genomes from several populations across the distributional range of the Eurasian lynx, with the objective of finding genomic windows under positive selection which may underlie local adaptations to different environments. A total of 394 genomic windows are found to be associated to local environmental conditions, and they are enriched for genes involved in metabolism, behaviour, synaptic organization and neural development. Adaptive genetic structure, reconstructed from SNPs in candidate windows, is considerably different than the neutral genetic structure of the species. A widespread adaptively homogeneous group is recovered occupying areas of harsher snow and temperature climatic conditions in the north-western, central and eastern parts of the distribution. Adaptively divergent populations are recovered in the westernmost part of the range, especially within the Baltic population, but also predicted for different patches in the western and southern part of the range, associated with different snow and temperature regimes. Adaptive differentiation driven by climate does not correlate much with the subspecies taxonomic delimitations, suggesting that subspecific divergences are mostly driven by neutral processes of genetic drift and gene flow. Our results will aid the selection of source populations for assisted gene flow or genetic rescue programs by identifying what climatic patterns to look for as predictors of pre-adaptation of individuals. Particularly, the Carpathian population is confirmed as the best source of individuals for the genetic rescue of the endangered, isolated and genetically eroded Balkan population. Additionally, reintroductions in central and western Europe, currently based mostly on Carpathian lynxes, could consider the Baltic population as an additional source to increase adaptive variation and likely improve adaptation to their milder climate.

6.
Ecol Evol ; 12(8): e9147, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35923936

RESUMEN

The ecology and evolution of reproductive timing and synchrony have been a topic of great interest in evolutionary ecology for decades. Originally motivated by questions related to behavioral and reproductive adaptation to environmental conditions, the topic has acquired new relevance in the face of climate change. However, there has been relatively little research on reproductive phenology in mammalian carnivores. The Eurasian lynx (Lynx lynx) occurs across the Eurasian continent, covering three of the four main climate regions of the world. Thus, their distribution includes a large variation in climatic conditions, making it an ideal species to explore reproductive phenology. Here, we used data on multiple reproductive events from 169 lynx females across Europe. Mean birth date was May 28 (April 23 to July 1), but was ~10 days later in northern Europe than in central and southern Europe. Birth dates were relatively synchronized across Europe, but more so in the north than in the south. Timing of birth was delayed by colder May temperatures. Severe and cold weather may affect neonatal survival via hypothermia and avoiding inclement weather early in the season may select against early births, especially at northern latitudes. Overall, only about half of the kittens born survived until onset of winter but whether kittens were born relatively late or early did not affect kitten survival. Lynx are strict seasonal breeders but still show a degree of flexibility to adapt the timing of birth to surrounding environmental conditions. We argue that lynx give birth later when exposed to colder spring temperatures and have more synchronized births when the window of favorable conditions for raising kittens is shorter. This suggests that lynx are well adapted to different environmental conditions, from dry and warm climates to alpine, boreal, and arctic climates. This variation in reproductive timing will be favorable in times of climate change, as organisms with high plasticity are more likely to adjust to new environmental conditions.

7.
Transbound Emerg Dis ; 67(6): 2615-2629, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32372476

RESUMEN

In 2014, African swine fever (ASF) emerged in Latvia for the first time. The majority of cases appeared in wild boar, but the presence of ASF in these animals constitutes a permanent threat to domestic pig holdings. Recent studies have shown an increase in serologically positive and a decrease in PCR-positive ASF cases in wild boar, possibly indicating a decline of ASF incidence. We aimed to investigate the course of the ASF epidemic in wild boar in Latvia, thus attaining further insights into the ASF epidemiology in this country with the goal of assessing the stage of the epidemic. Latvian ASF surveillance data of wild boar were utilized to estimate the seroprevalence and ASF virus (ASFV) prevalence in the wild boar population. Prevalence estimates were obtained for both the eastern and western part of the country and in addition for the 2014/2015 to 2018/2019 hunting seasons. Moreover, prevalence estimates for three different age classes were calculated. An increase in serologically positive yet PCR-negative wild boar samples from active surveillance was identified over time. When comparing the age groups, wild boar younger than one year displayed the ASFV prevalence to be higher than the seroprevalence, whereas older animals shared higher seroprevalence estimates. These findings support the assumption that only a small proportion of affected animals survive an infection, leading to an accumulation of their numbers over time. As a result, ASF elimination in a country with an infected wild boar population could possibly be achieved, if effective wild boar population management and surveillance is maintained and combined with the detection and removal of wild boar carcasses to reduce the viral load in the environment. In addition, the wild boar population should be kept as small as possible to break the ASFV infection cycle.


Asunto(s)
Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/epidemiología , Epidemias/veterinaria , Fiebre Porcina Africana/virología , Animales , Femenino , Letonia/epidemiología , Masculino , Prevalencia , Estudios Seroepidemiológicos , Sus scrofa , Porcinos
8.
Mol Ecol ; 18(9): 1963-79, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19434812

RESUMEN

The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear. Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.


Asunto(s)
Evolución Molecular , Genética de Población , Ursidae/genética , Animales , ADN Mitocondrial/genética , Demografía , Europa (Continente) , Variación Genética , Geografía , Haplotipos , Modelos Genéticos , Filogenia , Dinámica Poblacional , Federación de Rusia , Análisis de Secuencia de ADN
9.
Biol Rev Camb Philos Soc ; 92(3): 1601-1629, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27682639

RESUMEN

The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.


Asunto(s)
Conservación de los Recursos Naturales , Genética de Población , Lobos/genética , Animales , Europa (Continente) , Variación Genética , Repeticiones de Microsatélite/genética
10.
Ecol Evol ; 5(19): 4410-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26664688

RESUMEN

Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric-Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.

11.
Pest Manag Sci ; 71(4): 492-500, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25512181

RESUMEN

Across Europe, wild boar numbers increased in the 1960s-1970s but stabilised in the 1980s; recent evidence suggests that the numbers and impact of wild boar has grown steadily since the 1980s. As hunting is the main cause of mortality for this species, we reviewed wild boar hunting bags and hunter population trends in 18 European countries from 1982 to 2012. Hunting statistics and numbers of hunters were used as indicators of animal numbers and hunting pressure. The results confirmed that wild boar increased consistently throughout Europe, while the number of hunters remained relatively stable or declined in most countries. We conclude that recreational hunting is insufficient to limit wild boar population growth and that the relative impact of hunting on wild boar mortality had decreased. Other factors, such as mild winters, reforestation, intensification of crop production, supplementary feeding and compensatory population responses of wild boar to hunting pressure might also explain population growth. As populations continue to grow, more human-wild boar conflicts are expected unless this trend is reversed. New interdisciplinary approaches are urgently required to mitigate human-wild boar conflicts, which are otherwise destined to grow further.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Sus scrofa/fisiología , Agricultura , Animales , Cambio Climático , Europa (Continente) , Control de Plagas , Crecimiento Demográfico
12.
PLoS One ; 9(12): e115160, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551216

RESUMEN

Due to their high mobility, large terrestrial predators are potentially capable of maintaining high connectivity, and therefore low genetic differentiation among populations. However, previous molecular studies have provided contradictory findings in relation to this. To elucidate patterns of genetic structure in large carnivores, we studied the genetic variability of the Eurasian lynx, Lynx lynx throughout north-eastern Europe using microsatellite, mitochondrial DNA control region and Y chromosome-linked markers. Using SAMOVA we found analogous patterns of genetic structure based on both mtDNA and microsatellites, which coincided with a relatively little evidence for male-biased dispersal. No polymorphism for the cytochrome b and ATP6 mtDNA genes and Y chromosome-linked markers were found. Lynx inhabiting a large area encompassing Finland, the Baltic countries and western Russia formed a single genetic unit, while some marginal populations were clearly divergent from others. The existence of a migration corridor was suggested to correspond with distribution of continuous forest cover. The lowest variability (in both markers) was found in lynx from Norway and Bialowieza Primeval Forest (BPF), which coincided with a recent demographic bottleneck (Norway) or high habitat fragmentation (BPF). The Carpathian population, being monomorphic for the control region, showed relatively high microsatellite diversity, suggesting the effect of a past bottleneck (e.g. during Last Glacial Maximum) on its present genetic composition. Genetic structuring for the mtDNA control region was best explained by latitude and snow cover depth. Microsatellite structuring correlated with the lynx's main prey, especially the proportion of red deer (Cervus elaphus) in its diet. Eurasian lynx are capable of maintaining panmictic populations across eastern Europe unless they are severely limited by habitat continuity or a reduction in numbers. Different correlations of mtDNA and microsatellite population divergence patterns with climatic and ecological factors may suggest separate selective pressures acting on males and females in this solitary carnivore.


Asunto(s)
Carnivoría , Clima , Flujo Génico , Lynx/genética , Animales , Tamaño Corporal , ADN Mitocondrial/genética , Ecosistema , Femenino , Marcadores Genéticos/genética , Variación Genética , Geografía , Lynx/anatomía & histología , Masculino , Datos de Secuencia Molecular , Dinámica Poblacional , Cromosoma Y/genética
13.
PLoS One ; 8(9): e75765, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069446

RESUMEN

Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.


Asunto(s)
Lobos/genética , Animales , Estonia , Europa Oriental , Variación Genética , Genética de Población , Genotipo , Geografía , Endogamia , Letonia , Repeticiones de Microsatélite , Dinámica Poblacional , Análisis Espacial
14.
PLoS One ; 7(10): e46465, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056315

RESUMEN

Studies on hybridization have proved critical for understanding key evolutionary processes such as speciation and adaptation. However, from the perspective of conservation, hybridization poses a concern, as it can threaten the integrity and fitness of many wild species, including canids. As a result of habitat fragmentation and extensive hunting pressure, gray wolf (Canis lupus) populations have declined dramatically in Europe and elsewhere during recent centuries. Small and fragmented populations have persisted, but often only in the presence of large numbers of dogs, which increase the potential for hybridization and introgression to deleteriously affect wolf populations. Here, we demonstrate hybridization between wolf and dog populations in Estonia and Latvia, and the role of both genders in the hybridization process, using combined analysis of maternal, paternal and biparental genetic markers. Eight animals exhibiting unusual external characteristics for wolves - six from Estonia and two from Latvia - proved to be wolf-dog hybrids. However, one of the hybridization events was extraordinary. Previous field observations and genetic studies have indicated that mating between wolves and dogs is sexually asymmetrical, occurring predominantly between female wolves and male dogs. While this was also the case among the Estonian hybrids, our data revealed the existence of dog mitochondrial genomes in the Latvian hybrids and, together with Y chromosome and autosomal microsatellite data, thus provided the first evidence from Europe of mating between male wolves and female dogs. We discuss patterns of sexual asymmetry in wolf-dog hybridization.


Asunto(s)
Perros/fisiología , Hibridación Genética , Lobos/fisiología , Animales , ADN Satélite/genética , Femenino , Variación Genética , Masculino , Repeticiones de Microsatélite/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA