Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Reprod Fertil Dev ; 26(5): 645-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24942183

RESUMEN

The low number of oocytes collected from unstimulated donors by ovum pick-up means that embryos produced from each individual female have to be cultured individually or in very small groups. However, it has been demonstrated that single-embryo culture is less efficient than embryo culture in groups. To overcome this limitation, we developed a direct embryo-tagging system, which allows the collective culture of embryos from different origins whilst preserving their pedigree. Presumptive bovine zygotes were tagged with eight wheat-germ agglutinin biofunctionalised polysilicon barcodes attached to the outer surface of the zona pellucida (ZP). Four different barcodes were used to encode groups of 20-25 embryos, which were then cultured in the same drop. Cleavage, Day-7 and Day-8 blastocysts and barcode retention rates were assessed. In addition, Day-7 blastocysts were vitrified and warmed. Barcode attachment to the ZP of bovine embryos affected neither in vitro embryo development nor post-warming survival of the tagged embryos. All the embryos maintained barcodes attached until Day 8 of culture (3.63±0.37 barcodes per embryo) and could be identified. In conclusion, identification of embryos by barcodes attached to the ZP is feasible and will allow the culture of embryos from different donors in the same drop.


Asunto(s)
Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Zona Pelúcida , Animales , Bovinos , Criopreservación , Femenino , Vitrificación
2.
Hum Reprod ; 28(6): 1519-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23532322

RESUMEN

STUDY QUESTION: Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? SUMMARY ANSWER: The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. WHAT IS KNOWN ALREADY: Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. STUDY DESIGN, SIZE, DURATION: Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). PARTICIPANTS/MATERIALS, SETTING, METHODS: Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. MAIN RESULTS AND THE ROLE OF CHANCE: Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading system, although these rates could be increased to 100% by simply rotating the embryos during the reading process. LIMITATIONS, REASONS FOR CAUTION: The direct embryo tagging developed here has exclusively been tested in mouse embryos. Its effectiveness in other species, such as the human, is currently being tested. WIDER IMPLICATIONS OF THE FINDINGS: The direct embryo tagging system developed here, once tested in human embryos, could provide fertility clinics with a novel tool to reduce the risk of mix-ups in human assisted reproduction technologies.


Asunto(s)
Embrión de Mamíferos/ultraestructura , Zona Pelúcida/ultraestructura , Sistemas de Identificación Animal , Animales , Criopreservación , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Femenino , Ratones , Técnicas Reproductivas Asistidas , Compuestos de Silicona
3.
Int J Pharm ; 563: 21-29, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30885652

RESUMEN

Vitamin C (ascorbic acid) is a naturally occurring, powerful anti-oxidant with the potential to deliver numerous benefits to the skin when applied topically. However, topical use of this compound is currently restricted by an instability in traditional formulations and the delivery and eventual fate of precursor compounds has been largely unexplored. Time of flight secondary ion mass spectrometry (ToF-SIMS) is an emerging technique in the field of skin research and offers detailed chemical analysis, with high mass and spatial resolution, as well as profiling capabilities that allow analysis as a function of sample depth. This work demonstrates the successful use of ToF-SIMS to obtain, in situ, accurate 3D permeation profiles of both ascorbic acid and a popular precursor, ascorbyl glucoside, from ex vivo porcine skin. The significant permeation enhancing effect of a supramolecular hydrogel formulation, produced from an amphiphilic gemini imidazolium-based surfactant, was also demonstrated for both compounds. Using ToF-SIMS, it was also possible to detect and track the breakdown of ascorbyl glucoside into ascorbic acid, elucidating the ability of the hydrogel formulation to preserve this important conversion until the targeted epidermal layer has been reached. This work demonstrates the potential of ToF-SIMS to provide 3D permeation profiles collected in situ from ex vivo tissue samples, offering detailed analysis on compound localisation and degradation. This type of analysis has significant advantages in the area of skin permeation, but can also be readily translated to other tissue types.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Hidrogeles/administración & dosificación , Absorción Cutánea , Espectrometría de Masa de Ion Secundario , Vitaminas/administración & dosificación , Administración Tópica , Animales , Piel/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA