Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(23): 10843-10853, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38810089

RESUMEN

Synthesis and characterization of DEMOFs (defect-engineered metal-organic frameworks) with coordinatively unsaturated sites (CUSs) for gas adsorption, catalysis, and separation are reported. We use the mixed-linker approach to introduce defects in Cu2-paddle wheel units of MOFs [Cu2(Me-trz-ia)2] by replacing up to 7% of the 3-methyl-triazolyl isophthalate linker (1L2-) with the "defective linker" 3-methyl-triazolyl m-benzoate (2L-), causing uncoordinated equatorial sites. PXRD of DEMOFs shows broadened reflections; IR and Raman analysis demonstrates only marginal changes as compared to the regular MOF (ReMOF, without a defective linker). The concentration of the integrated defective linker in DEMOFs is determined by 1H NMR and HPLC, while PXRD patterns reveal that DEMOFs maintain phase purity and crystallinity. Combined XPS (X-ray photoelectron spectroscopy) and cw EPR (continuous wave electron paramagnetic resonance) spectroscopy analyses provide insights into the local structure of defective sites and charge balance, suggesting the presence of two types of defects. Notably, an increase in CuI concentration is observed with incorporation of defective linkers, correlating with the elevated isosteric heat of adsorption (ΔHads). Overall, this approach offers valuable insights into the creation and evolution of CUSs within MOFs through the integration of defective linkers.

2.
Phys Chem Chem Phys ; 25(23): 15702-15714, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259848

RESUMEN

The nature of the chemical bonding between NO and open-shell NiII ions docked in a metal-organic framework is fully characterized by EPR spectroscopy and computational methods. High-frequency EPR experiments reveal the presence of unsaturated NiII ions displaying five-fold coordination. Upon NO adsorption, in conjunction with advanced EPR methodologies and DFT/CASSCF modelling, the covalency of the metal-NO and metal-framework bonds is directly quantified. This enables unravelling the complex electronic structure of NiII-NO species and retrieving their microscopic structure.

3.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770643

RESUMEN

At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn2+ ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co2+ paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co2+ center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn2+ case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.

4.
Angew Chem Int Ed Engl ; 62(33): e202218076, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37052183

RESUMEN

Flexible porous frameworks are at the forefront of materials research. A unique feature is their ability to open and close their pores in an adaptive manner induced by chemical and physical stimuli. Such enzyme-like selective recognition offers a wide range of functions ranging from gas storage and separation to sensing, actuation, mechanical energy storage and catalysis. However, the factors affecting switchability are poorly understood. In particular, the role of building blocks, as well as secondary factors (crystal size, defects, cooperativity) and the role of host-guest interactions, profit from systematic investigations of an idealized model by advanced analytical techniques and simulations. The review describes an integrated approach targeting the deliberate design of pillared layer metal-organic frameworks as idealized model materials for the analysis of critical factors affecting framework dynamics and summarizes the resulting progress in their understanding and application.

5.
J Am Chem Soc ; 144(29): 13079-13083, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819401

RESUMEN

Using EPR and HYSCORE spectroscopies in conjunction with ab initio calculations, we assess the structure of framework-bound monomeric hydroxo-CuII in copper-loaded chabazite (CHA). The species is an interfacial distorted square-planar [CuIIOH(O-8MRs)3] complex located at eight-membered-ring windows, displaying three coordinating bonds with zeolite lattice oxygens and the hydroxo ligand hydrogen-bonded to the cage. The complex has a distinctive EPR signature with g = [2.072 2.072 2.290], CuA= [30 30 410] MHz, and HA = [-13.0 -4.5 +11.5] MHz, distinctively different from other CuII species in CHA.


Asunto(s)
Zeolitas , Cobre/química , Cristalografía por Rayos X , Ligandos
6.
Inorg Chem ; 60(12): 9008-9018, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34077201

RESUMEN

Metal bis(dithiolene) complexes are promising building blocks for electrically conductive coordination polymers. N-Heterocyclic dithiolene complexes allow their cross-linking via the coordination of N-donor atoms to additional transition metal ions. In this study, we present the formal copper(II) and copper(III) 6,7-quinoxalinedithiolene complexes [Cu(qdt)2]- and [Cu(qdt)2]2- (qdt2-: 6,7-quinoxalinedithiolate), as well as the 2D coordination polymer Cu[Cu(Hqdt)(qdt)] (3). The dithiolene complexes were isolated as (Bu4N)2[Cu(qdt)2] (1), Na[Cu(qdt)2]·4H2O (2a), [Na(acetone)4][Cu(qdt)2] (2b), and [Ni(MeOH)6][Cu(qdt)2]2·2H2O (2c). Their crystal structures reveal nearly planar complexes with a high tendency of π-stacking. For a better understanding of their coordination behavior, the electronic properties are investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and DFT simulations. The synthesis of the 2D coordination polymer 3 involves the reduction and protonation of the monoanionic copper(III) complex. A combination of powder X-ray diffraction, magnetic susceptibility measurements, as well as IR and EPR spectroscopy confirm that formal [CuII(Hqdt)(qdt)]- units link trigonal planar copper(I) atoms to a dense 2D coordination polymer. The electrical conductivity of 3 at room temperature is 2 × 10-7 S/cm. Temperature dependent conductivity measurements confirm the semiconducting behavior of 3 with an Arrhenius derived activation energy of 0.33 eV. The strong absorption of 3 in the visible and NIR regions of the spectrum is caused by the small optical band gap of Eg,opt = 0.65 eV, determined by diffuse reflectance spectroscopy. This study sheds light on the coordination chemistry of N-heterocyclic dithiolene complexes and may serve as a reference for the future design and synthesis of dithiolene-based coordination polymers with interesting electrical and magnetic properties.

7.
Chemistry ; 26(25): 5667-5675, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31860147

RESUMEN

Metal-organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed-metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed-metal metal-organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed-metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X-ray diffraction, X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed-metal FeCuBTC material with HKUST-1 structure, which contained bimetallic Fe-Cu paddlewheels as well as monometallic Cu-Cu and Fe-Fe units under optimized synthesis conditions. The in-depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed-metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed-metal metal-organic framework materials and the thorough characterization thereof is particularly important to derive structure-property or structure-activity correlations.

8.
Phys Chem Chem Phys ; 22(16): 8513-8521, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32301462

RESUMEN

We present an X- and Q-band continuous wave (CW) and pulse electron paramagnetic resonance (EPR) study of a manganese doped [NH4][Zn(HCOO)3] hybrid framework, which exhibits a ferroelectric structural phase transition at 190 K. The CW EPR spectra obtained at different temperatures exhibit clear changes at the phase transition temperature. This suggests a successful substitution of the Zn2+ ions by the paramagnetic Mn2+ centers, which is further confirmed by the pulse EPR and 1H ENDOR experiments. Spectral simulations of the CW EPR spectra are used to obtain the temperature dependence of the Mn2+ zero-field splitting, which indicates a gradual deformation of the MnO6 octahedra indicating a continuous character of the transition. The determined data allow us to extract the critical exponent of the order parameter (ß = 0.12), which suggests a quasi two-dimensional ordering in [NH4][Zn(HCOO)3]. The experimental EPR results are supported by the density functional theory calculations of the zero-field splitting parameters. Relaxation time measurements of the Mn2+ centers indicate that the longitudinal relaxation is mainly driven by the optical phonons, which correspond to the vibrations of the metal-oxygen octahedra. The temperature behavior of the transverse relaxation indicates a dynamic process in the ordered ferroelectric phase.

9.
Inorg Chem ; 58(7): 4561-4573, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869884

RESUMEN

A Cu2+-doped metal-organic framework (DUT-8(Ni0.98Cu0.02), M2(NDC)2DABCO, M = Ni, Cu, NDC = 2,6-napththalene dicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane, DUT = Dresden University of Technology) was synthesized in the form of large (>1 µm) and small crystals (<1 µm) to analyze their switchability by X-band continuous wave (cw) electron paramagnetic resonance (EPR) spectroscopy. The large crystals are flexible and in a porous open pore (op) phase after solvation in N, N-dimethylformamide (DMF), but in the activated solvent-free form, a nonporous closed pore (cp) phase forms. EPR measurements of the rigid Ni-free DUT-8(Cu) show a characteristic electron spin S = 1 room temperature signal of the antiferromagnetically coupled Cu2+-Cu2+ paddlewheel building unit of this metal-organic framework. None of the mixed metal DUT-8(Ni0.98Cu0.02) materials showed comparable signals, indicating the absence of dimeric Cu2+-Cu2+ paddlewheel units in the materials. Instead, characteristic electron spin S = 3/2 signals are detected for all DUT-8(Ni0.98Cu0.02) samples at temperatures T < 77 K, which can be assigned to ferromagnetically coupled mixed metal Ni2+-Cu2+ paddlewheel units. Those signals differ characteristically for the op and cp phase and enable monitoring the reversible op-cp transition during the de-/adsorption of DMF.

10.
Inorg Chem ; 57(19): 11920-11929, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30207461

RESUMEN

The effect of the synthesis conditions on the structure and guest-responsive properties of a "gate pressure" metal-organic framework (MOF) with composition [Cu(4,4'-bipy)2(BF4)2] n (4,4'-bipy = 4,4'-bipyridine), also known as ELM-11 (ELM = elastic layer material) was investigated. Two different batches of ELM-11, synthesized from water-methanol and water-acetonitrile solutions, have been entirely characterized by PXRD, nitrogen (77 K) and carbon dioxide (195 K) physisorption, elemental analysis, DRIFT, TG, and SEM. Both ELM-11 samples were studied by electron paramagnetic resonance (EPR) spectroscopy in order to follow the change in the local structure of the copper ion during the activation and resolvation. Continuous wave X-band EPR measurements on powder samples provided an elongated octahedral coordination symmetry of the cupric ions and revealed different axial ligands in the as-synthesized and activated forms in both bulk samples of ELM-11. One of the procedures was amended in order to slow down the crystallization that allows isolation of single crystals of two polymorphic modifications of Cu-4,4'-bipyridine coordination polymers, namely [Cu(4,4'-bipy)2(CH3CN)2](BF4)2 and [Cu2O(4,4'-bipy)3(CH3CN)4](BF4)2, one of which shows a crystal structure similar to that of ELM-11. Further single-crystal EPR experiments on the as-synthesized material [Cu(4,4'-bipy)2(CH3CN)2](BF4)2 revealed the orientation of the g tensor of the cupric ions and proved that layers of acetonitrile-synthesized ELM-11 are arranged perpendicularly to the crystallographic c axis.

11.
Phys Chem Chem Phys ; 20(17): 12097-12105, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676417

RESUMEN

We report a continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) as well as pulse electron nuclear double resonance (ENDOR) study of Cu2+ doped [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite which exhibits a structural phase transition. The multifrequency (X, Q and W-band) CW EPR measurements allow the temperature evolution of the Cu2+ ion local environment to be studied. The spectrum of the ordered (low-temperature) phase reveals an axially distorted octahedral Cu2+ site confirming the successful replacement of the Zn2+ ions and formation of the CuO6 octahedra. The CW EPR spectrum of the disordered (high-temperature) phase shows an additional broad line which gradually diminishes on cooling. The EPR linewidth of the axially symmetric Cu2+ ion site exhibits an anomaly at the phase transition point and Arrhenius-type behavior in the disordered phase. The temperature dependent Cu2+ spin Hamiltonian parameters change abruptly at the phase transition point indicating a strong first-order character of the transition. The X-band pulse ENDOR spectrum of the ordered phase reveals several protons in the vicinity of the Cu2+ center.

12.
Phys Chem Chem Phys ; 19(46): 31030-31038, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29155906

RESUMEN

Continuous wave X-band electron paramagnetic resonance (EPR) and density functional theory (DFT) were successfully applied to explore the incorporation and coordination state of the Cu2+ ions in the [Cd0.98Cu0.02(prz-trz-ia)] porous metal-organic frameworks. EPR measurements on powder samples and single crystals provided the full electron Zeeman g and copper hyperfine ACu interaction tensors including the orientation of their principal axes frames. DFT computations allowed for a detailed interpretation of the experimental results in terms of coordination symmetry and binding properties of the paramagnetic Cu2+ ions. Cupric ions were found to substitute Cd2+ ions in the dinuclear Cd-Cd units where they experience a noticeably distorted elongated pyramidal coordination environment formed by three nitrogen and two oxygen atoms from three linker molecules.

13.
Biometals ; 30(1): 71-82, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28064420

RESUMEN

Iron incorporation into diatom biosilica was investigated for the species Stephanopyxis turris. It is known that several "foreign" elements (e.g., germanium, titanium, aluminum, zinc, iron) can be incorporated into the siliceous cell walls of diatoms in addition to silicon dioxide (SiO2). In order to examine the amount and form of iron incorporation, the iron content in the growth medium was varied during cultivation. Fe:Si ratios of isolated cell walls were measured by ICP-OES. SEM studies were performed to examine of a possible influence of excess iron during diatom growth upon cell wall formation. The chemical state of biosilica-attached iron was characterized by a combination of infrared, 29Si MAS NMR, and EPR spectroscopy. For comparison, synthetic silicagels of variable iron content were studied. Our investigations show that iron incorporation in biosilica is limited. More than 95% of biosilica-attached iron is found in the form of iron clusters/nanoparticles. In contrast, iron is preferentially dispersedly incorporated within the silica framework in synthetic silicagels leading to Si-O-Fe bond formation.


Asunto(s)
Pared Celular/química , Diatomeas/química , Hierro/química , Dióxido de Silicio/química , Medios de Cultivo , Espectroscopía de Resonancia Magnética , Nanopartículas/química , Titanio/química
14.
J Chem Phys ; 147(22): 224701, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29246040

RESUMEN

The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27Al atom and all its relevant 14N and 27Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.

15.
Angew Chem Int Ed Engl ; 55(41): 12683-7, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27599895

RESUMEN

We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion.

16.
J Am Chem Soc ; 136(27): 9627-36, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24915512

RESUMEN

A series of defect-engineered metal-organic frameworks (DEMOFs) derived from parent microporous MOFs was obtained by systematic doping with defective linkers during synthesis, leading to the simultaneous and controllable modification of coordinatively unsaturated metal sites (CUS) and introduction of functionalized mesopores. These materials were investigated via temperature-dependent adsorption/desorption of CO monitored by FTIR spectroscopy under ultra-high-vacuum conditions. Accurate structural models for the generated point defects at CUS were deduced by matching experimental data with theoretical simulation. The results reveal multivariate diversity of electronic and steric properties at CUS, demonstrating the MOF defect structure modulation at two length scales in a single step to overcome restricted active site specificity and confined coordination space at CUS. Moreover, the DEMOFs exhibit promising modified physical properties, including band gap, magnetism, and porosity, with hierarchical micro/mesopore structures correlated with the nature and the degree of defective linker incorporation into the framework.


Asunto(s)
Compuestos Organometálicos/química , Estructura Molecular , Compuestos Organometálicos/síntesis química , Porosidad , Propiedades de Superficie
17.
Molecules ; 19(11): 17305-13, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25353382

RESUMEN

The radical cation of s-trioxane, radiolytically generated in a freon (CF3CCl3) matrix, was studied in the 10-140 K temperature region. Reversible changes of the EPR spectra were observed, arising from both ring puckering and ring inversion through the molecular plane. The ESREXN program based on the Liouville density matrix equation, allowing the treatment of dynamical exchange, has been used to analyze the experimental results. Two limiting conformer structures of the s-trioxane radical cation were taken into account, namely "rigid" half-boat and averaged planar ones, differing strongly in their electron distribution. The spectrum due to the "rigid" half-boat conformer can be observed only at very low (<60 K) temperatures, when the exchange of conformers is very slow. Two transition states for interconversion by puckering and ring-inversion were identified, close in activation energy (2.3 and 3.0 kJ/mol calculated). Since the energy difference is very small, both processes set on at a comparable temperature. In the case of nearly complete equilibration (fast exchange) between six energetically equivalent structures at T > 120 K in CF3CCl3, a septet due to six equivalent protons (hfs splitting constant 5.9 mT) is observed, characteristic of the dynamically averaged planar geometry of the radical cation. DFT quantum chemical calculations and spectral simulation including intramolecular dynamical exchange support the interpretation.


Asunto(s)
Cationes/química , Compuestos Heterocíclicos/química , Clorofluorocarburos/química , Frío , Electrones , Modelos Teóricos , Protones
18.
RSC Adv ; 14(6): 4244-4251, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38292261

RESUMEN

The flexibility of the MIL-53(M) metal-organic framework (MOF) has been elucidated through various characterization methodologies, particularly in gas and liquid adsorption processes. However, to the best of our knowledge, there has been no prior electron paramagnetic resonance (EPR) characterization of liquid-phase adsorption in the MOF MIL-53(M), which offers insights into local geometric changes at the oxygen octahedron containing the metal ions of the framework. In this study, we investigate, for the first time, the pore transformations within the MIL-53(Al0.99Cr0.01) framework during liquid-phase adsorption using EPR spectroscopy. Our investigation concentrates explicitly on the adsorption of pure solvents, including water, methanol, ethanol, isopropanol, pyridine, and mixed water/methanol phases. The EPR spectroscopy on the (Al0.99Cr0.01) MOF has allowed us to witness and comprehend the transitions between the narrow pore and large pore phases by examining changes in the zero-field splitting parameters of the S = 3/2 Cr(iii) species. Of all the solvents examined, a robust and distinct spectral feature observed during methanol adsorption unequivocally indicates the pore opening.

19.
J Phys Chem B ; 128(18): 4344-4353, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38688080

RESUMEN

Flavin mononucleotide (FMN) is a ubiquitous blue-light pigment due to its ability to drive one- and two-electron transfer reactions. In both light-oxygen-voltage (LOV) domains of phototropin from the green algae Chlamydomonas reinhardtii, FMN is noncovalently bound. In the LOV1 cysteine-to-serine mutant (C57S), light-induced electron transfer from a nearby tryptophan occurs, and a transient spin-correlated radical pair (SCRP) is formed. Within this photocycle, nuclear hyperpolarization is created by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. In a side reaction, a stable protonated semiquinone radical (FMNH·) forms undergoing a significant bathochromic shift of the first electronic transition from 445 to 591 nm. The incorporation of phototropin LOV1-C57S into an amorphous trehalose matrix, stabilizing the radical, allows for application of various magnetic resonance experiments at ambient temperatures, which are combined with quantum-chemical calculations. As a result, the bathochromic shift of the first absorption band is explained by lifting the degeneracy of the molecular orbital energy levels for electrons with alpha and beta spins in FMNH· due to the additional electron.

20.
Chem Commun (Camb) ; 59(65): 9884-9887, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37493059

RESUMEN

In situ continuous wave electron paramagnetic resonance investigation has been proven as a powerful method by employing paramagnetic Ni2+-Co2+ pairs as spin probes to follow the isotope-selective gate opening phenomenon on the DUT-8(Ni0.98 Co0.02) framework. This method is very sensitive to detect the phase transition from the closed pore to the open pore phase in response to D2 adsorption in the framework, while no phase transformation has been observed during H2 gas adsorption. More interestingly, it is also able to sense local structural changes around the spin probe during the desorption of D2 gas. Based on these evidences, the in situ continuous wave electron paramagnetic resonance method can be implemented as an efficient and non-invasive technique for the detection of dihydrogen isotopes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA