Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38082954

RESUMEN

We present the use of mean Hounsfield units within lungs as a metric of disease severity for the comparison of image analysis models in patients with COPD and COVID. We used this metric to assess the performance of a novel 3D global context attention network for image segmentation that produces lung masks from thoracic HRCT scans. Results showed that the mean Hounsfield units enable a detailed comparison of our 3D implementation of the GC-Net model to the V-Net segmentation algorithm. We implemented a biomimetic data augmentation strategy and used a quantitative severity metric to assess its performance. Framing our investigation around lung segmentation for patients with respiratory diseases allows analysis of the strengths and weaknesses of the implemented models in this context.Clinical Relevance - Mean Hounsfield units within the lung volume can be used as an objective measure of respiratory disease severity for the comparison of CT scan analysis algorithms.


Asunto(s)
COVID-19 , Humanos , Pulmón/diagnóstico por imagen , Algoritmos , Tomografía Computarizada por Rayos X/métodos , Tórax
2.
Comput Methods Programs Biomed ; 202: 105970, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33610035

RESUMEN

BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD) and heart failure are the most common cardiovascular diseases. Non-invasive diagnostic testing for CAD requires radiation, heart rate acceleration, and imaging infrastructure. Early detection of left ventricular dysfunction is critical in heart failure management, the best measure of which is an elevated left ventricular end-diastolic pressure (LVEDP) that can only be measured using invasive cardiac catheterization. There exists a need for non-invasive, safe, and fast diagnostic testing for CAD and elevated LVEDP. This research employs nonlinear dynamics to assess for significant CAD and elevated LVEDP using non-invasively acquired photoplethysmographic (PPG) and three-dimensional orthogonal voltage gradient (OVG) signals. PPG (variations of the blood volume perfusing the tissue) and OVG (mechano-electrical activity of the heart) signals represent the dynamics of the cardiovascular system. METHODS: PPG and OVG were simultaneously acquired from two cohorts, (i) symptomatic subjects that underwent invasive cardiac catheterization, the gold standard test (408 CAD positive with stenosis≥ 70% and 186 with LVEDP≥ 20 mmHg) and (ii) asymptomatic healthy controls (676). A set of Poincaré-based synchrony features were developed to characterize the interactions between the OVG and PPG signals. The extracted features were employed to train machine learning models for CAD and LVEDP. Five-fold cross-validation was used and the best model was selected based on the average area under the receiver operating characteristic curve (AUC) across 100 runs, then assessed using a hold-out test set. RESULTS: The Elastic Net model developed on the synchrony features can effectively classify CAD positive subjects from healthy controls with an average validation AUC=0.90±0.03 and an AUC= 0.89 on the test set. The developed model for LVEDP can discriminate subjects with elevated LVEDP from healthy controls with an average validation AUC=0.89±0.03 and an AUC=0.89 on the test set. The feature contributions results showed that the selection of a proper registration point for Poincaré analysis is essential for the development of predictive models for different disease targets. CONCLUSIONS: Nonlinear features from simultaneously-acquired signals used as inputs to machine learning can assess CAD and LVEDP safely and accurately with an easy-to-use, portable device, utilized at the point-of-care without radiation, contrast, or patient preparation.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Hemodinámica , Humanos , Volumen Sistólico , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA