Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Chem Phys ; 161(10)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39248241

RESUMEN

Telomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology. We used small-angle x-ray scattering to investigate the end-to-end stacking of antiparallel telomeric G-quadruplexes formed by the sequence AG3(T2AG3)3. To represent the experimental data, we developed a highly efficient coarse-grained fitting tool, which successfully described the samples as an equilibrium mixture of monomeric and dimeric G4 species. Our findings indicate that the antiparallel topology prevents the formation of long multimeric structures under self-crowding conditions, unlike the hybrid/parallel structures formed by the same DNA sequence. This result supports the idea that the stacking of monomeric G-quadruplexes is strongly affected by the presence of diagonal loops.


Asunto(s)
G-Cuádruplex , Dispersión del Ángulo Pequeño , Telómero , Telómero/química , ADN/química , Difracción de Rayos X
2.
J Am Chem Soc ; 145(29): 16166-16175, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432645

RESUMEN

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations. The degree of multimerization and the strength of the stacking interaction are quantitatively determined in G4 self-assembled multimers. We show that self-assembly induces a significant polydispersity of the G4 multimers with an exponential distribution of contour lengths, consistent with a step-growth polymerization. On increasing DNA concentration, the strength of the stacking interaction between G4 monomers increases, as well as the average number of units in the aggregates. We utilized the same approach to explore the conformational flexibility of a model single-stranded long telomeric sequence. Our findings indicate that its G4 units frequently adopt a beads-on-a-string configuration. We also observe that the interaction between G4 units can be significantly affected by complexation with benchmark ligands. The proposed methodology, which identifies the determinants that govern the formation and structural flexibility of G4 multimers, may be an affordable tool aiding in the selection and design of drugs that target G4s under physiological conditions.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , ADN/química , Telómero
3.
J Chem Phys ; 159(16)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37870134

RESUMEN

Understanding how proteins work requires a thorough understanding of their internal dynamics. Proteins support a wide range of motions, from the femtoseconds to seconds time scale, relevant to crucial biological functions. In this context, the term "protein collective dynamics" refers to the complex patterns of coordinated motions of numerous atoms throughout the protein in the sub-picosecond time scale (terahertz frequency region). It is hypothesized that these dynamics have a substantial impact on the regulation of functional dynamical mechanisms, including ligand binding and allosteric signalling, charge transport direction, and the regulation of thermodynamic and thermal transport properties. Using the theoretical framework of hydrodynamics, the collective dynamics of proteins had previously been described in a manner akin to that of simple liquids, i.e. in terms of a single acoustic-like excitation, related to intra-protein vibrational motions. Here, we employ an interacting-mode model to analyse the results from molecular dynamics simulations and we unveil that the vibrational landscape of proteins is populated by multiple acoustic-like and low-frequency optic-like modes, with mixed symmetry and interfering with each other. We propose an interpretation at the molecular level of the observed scenario that we relate to the side-chains and the hydrogen-bonded networks dynamics. The present insights provide a perspective for understanding the molecular mechanisms underlying the energy redistribution processes in the interior of proteins.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Movimiento (Física) , Vibración , Termodinámica
4.
J Enzyme Inhib Med Chem ; 38(1): 2251721, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37638806

RESUMEN

Non-structural protein 5 (Nsp5) is a cysteine protease that plays a key role in SARS-CoV-2 replication, suppressing host protein synthesis and promoting immune evasion. The investigation of natural products as a potential strategy for Nsp5 inhibition is gaining attention as a means of developing antiviral agents. In this work, we have investigated the physicochemical properties and structure-activity relationships of ellagic acid and its gut metabolites, urolithins A-D, as ligands of Nsp5. Results allow us to identify urolithin D as promising ligand of Nsp5, with a dissociation constant in the nanomolar range of potency. Although urolithin D is able to bind to the catalytic cleft of Nsp5, the appraisal of its viral replication inhibition against SARS-CoV-2 in Vero E6 assay highlights a lack of activity. While these results are discussed in the framework of the available literature reporting conflicting data on polyphenol antiviral activity, they provide new clues for natural products as potential viral protease inhibitors.


Asunto(s)
Antivirales , Productos Biológicos , Ácido Elágico , SARS-CoV-2 , Replicación Viral , Antivirales/farmacología , Productos Biológicos/farmacología , Ácido Elágico/farmacología , Compuestos Heterocíclicos/farmacología , Ligandos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos
5.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240437

RESUMEN

Guanine-rich DNA sequences can fold into non-canonical nucleic acid structures called G-quadruplexes (G4s). These nanostructures have strong implications in many fields, from medical science to bottom-up nanotechnologies. As a result, ligands interacting with G4s have attracted great attention as candidates in medical therapies, molecular probe applications, and biosensing. In recent years, the use of G4-ligand complexes as photopharmacological targets has shown significant promise for developing novel therapeutic strategies and nanodevices. Here, we studied the possibility of manipulating the secondary structure of a human telomeric G4 sequence through the interaction with two photosensitive ligands, DTE and TMPyP4, whose response to visible light is different. The effect of these two ligands on G4 thermal unfolding was also considered, revealing the occurrence of peculiar multi-step melting pathways and the different attitudes of the two molecules on the quadruplex stabilization.


Asunto(s)
G-Cuádruplex , Humanos , Ligandos , Luz , Telómero/genética
6.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901712

RESUMEN

Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism and complexation on the G4 fast dynamics is mediated by hydration water.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Humanos , Ligandos , Agua , Telómero
7.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047038

RESUMEN

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site. Individual monomers, however, have very low or no catalytic activity. As such, inhibition of Mpro can be achieved by molecules that target the substrate binding pocket to block catalytic activity or target the dimerization process. In this study, we investigated GC376, a transition-state analog inhibitor of the main protease of feline infectious peritonitis coronavirus, and Nirmatrelvir (NMV), an oral, bioavailable SARS-CoV-2 Mpro inhibitor with pan-human coronavirus antiviral activity. Our results show that both GC376 and NMV are capable of strongly binding to SARS-CoV-2 Mpro and altering the monomer-dimer equilibrium by stabilizing the dimeric state. This behavior is proposed to be related to a structured hydrogen-bond network established at the Mpro active site, where hydrogen bonds between Ser1' and Glu166/Phe140 are formed in addition to those achieved by the latter residues with GC376 or NMV.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
8.
Phys Chem Chem Phys ; 24(47): 29232-29240, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36445842

RESUMEN

G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.


Asunto(s)
Telómero , Humanos
9.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563512

RESUMEN

G-quadruplexes (G4s) are noncanonical forms of DNA involved in many key genome functions. Here, we exploited UV Resonance Raman scattering to simultaneously explore the vibrational behavior of a human telomeric G4 (Tel22) and its aqueous solvent as the biomolecule underwent thermal melting. We found that the OH stretching band, related to the local hydrogen-bonded network of a water molecule, was in strict relation with the vibrational features of the G4 structure as a function of temperature. In particular, the modifications to the tetrahedral ordering of the water network were strongly coupled to the DNA rearrangements, showing changes in temperature that mirrored the multi-step melting process of Tel22. The comparison between circular dichroism and Raman results supported this view. The present findings provide novel insights into the impact of the molecular environment on G4 conformation. Improving current knowledge on the solvent structural properties will also contribute to a better understanding of the role played by water arrangement in the complexation of G4s with ligands.


Asunto(s)
G-Cuádruplex , Dicroismo Circular , Reordenamiento Génico , Humanos , Solventes , Telómero/genética , Vibración , Agua
10.
Phys Rev Lett ; 126(8): 088102, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709739

RESUMEN

The interaction between proteins and hydration water stabilizes protein structure and promotes functional dynamics, with water translational motions enabling protein flexibility. Engineered solvent-free protein-polymer hybrids have been shown to preserve protein structure, function, and dynamics. Here, we used neutron scattering, protein and polymer perdeuteration, and molecular dynamics simulations to explore how a polymer dynamically replaces water. Even though relaxation rates and vibrational properties are strongly modified in polymer coated compared to hydrated proteins, liquidlike polymer dynamics appear to plasticize the conjugated protein in a qualitatively similar way as do hydration-water translational motions.


Asunto(s)
Polímeros/química , Proteínas/química , Diaminas/química , Glicolatos/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mioglobina/química , Difracción de Neutrones , Polietilenglicoles/química , Conformación Proteica , Termodinámica , Agua/química
11.
Nucleic Acids Res ; 46(22): 11927-11938, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30407585

RESUMEN

A multi-technique approach, combining circular dichroism spectroscopy, ultraviolet resonance Raman spectroscopy and small angle scattering techniques, has been deployed to elucidate how the structural features of the human telomeric G-quadruplex d[A(GGGTTA)3GGG] (Tel22) change upon thermal unfolding. The system is studied both in the free form and when it is bound to Actinomycin D (ActD), an anticancer ligand with remarkable conformational flexibility. We find that at room temperature binding of Tel22 with ActD involves end-stacking upon the terminal G-tetrad. Structural evidence for drug-driven dimerization of a significant fraction of the G-quadruplexes is provided. When the temperature is raised, both free and bound Tel22 undergo melting through a multi-state process. We show that in the intermediate states of Tel22 the conformational equilibrium is shifted toward the (3+1) hybrid-type, while a parallel structure is promoted in the complex. The unfolded state of the free Tel22 is consistent with a self-avoiding random-coil conformation, whereas the high-temperature state of the complex is observed to assume a quite compact form. Such an unprecedented high-temperature arrangement is caused by the persistent interaction between Tel22 and ActD, which stabilizes compact conformations even in the presence of large thermal structural fluctuations.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Dactinomicina/química , G-Cuádruplex , Telómero/química , Sitios de Unión , Dimerización , Calor , Humanos , Cinética , Ligandos , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Termodinámica
12.
Proc Natl Acad Sci U S A ; 114(35): 9361-9366, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808004

RESUMEN

Internal subnanosecond timescale motions are key for the function of proteins, and are coupled to the surrounding solvent environment. These fast fluctuations guide protein conformational changes, yet their role for protein stability, and for unfolding, remains elusive. Here, in analogy with the Lindemann criterion for the melting of solids, we demonstrate a common scaling of structural fluctuations of lysozyme protein embedded in different environments as the thermal unfolding transition is approached. By combining elastic incoherent neutron scattering and advanced molecular simulations, we show that, although different solvents modify the protein melting temperature, a unique dynamical regime is attained in proximity of thermal unfolding in all solvents that we tested. This solvation shell-independent dynamical regime arises from an equivalent sampling of the energy landscape at the respective melting temperatures. Thus, we propose that a threshold for the conformational entropy provided by structural fluctuations of proteins exists, beyond which thermal unfolding is triggered.


Asunto(s)
Proteínas del Huevo/química , Muramidasa/química , Desplegamiento Proteico , Simulación por Computador , Proteínas del Huevo/metabolismo , Modelos Químicos , Modelos Moleculares , Muramidasa/metabolismo , Conformación Proteica , Estabilidad Proteica , Temperatura , Temperatura de Transición
13.
Chem Rev ; 116(13): 7570-89, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27195477

RESUMEN

This review article focuses on the most recent advances in X-ray and neutron scattering studies of water structure, from ambient temperature to the deeply supercooled and amorphous states, and of water diffusive and collective dynamics, in disparate thermodynamic conditions and environments. In particular, the ability to measure X-ray and neutron diffraction of water with unprecedented high accuracy in an extended range of momentum transfers has allowed the derivation of detailed O-O pair correlation functions. A panorama of the diffusive dynamics of water in a wide range of temperatures (from 400 K down to supercooled water) and pressures (from ambient up to multiple gigapascals) is presented. The recent results obtained by quasi-elastic neutron scattering under high pressure are compared with the existing data from nuclear magnetic resonance, dielectric and infrared measurements, and modeling. A detailed description of the vibrational dynamics of water as measured by inelastic neutron scattering is presented. The dependence of the water vibrational density of states on temperature and pressure, and in the presence of biological molecules, is discussed. Results about the collective dynamics of water and its dispersion curves as measured by coherent inelastic neutron scattering and inelastic X-ray scattering in different thermodynamic conditions are reported.

14.
Biophys J ; 112(5): 933-942, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28297652

RESUMEN

Nearly all protein functions require structural change, such as enzymes clamping onto substrates, and ion channels opening and closing. These motions are a target for possible new therapies; however, the control mechanisms are under debate. Calculations have indicated protein vibrations enable structural change. However, previous measurements found these vibrations only weakly depend on the functional state. By using the novel technique of anisotropic terahertz microscopy, we find that there is a dramatic change to the vibrational directionality with inhibitor binding to lysozyme, whereas the vibrational energy distribution, as measured by neutron inelastic scattering, is only slightly altered. The anisotropic terahertz measurements provide unique access to the directionality of the intramolecular vibrations, and immediately resolve the inconsistency between calculations and previous measurements, which were only sensitive to the energy distribution. The biological importance of the vibrational directions versus the energy distribution is revealed by our calculations comparing wild-type lysozyme with a higher catalytic rate double deletion mutant. The vibrational energy distribution is identical, but the more efficient mutant shows an obvious reorientation of motions. These results show that it is essential to characterize the directionality of motion to understand and control protein dynamics to optimize or inhibit function.


Asunto(s)
Movimiento , Muramidasa/metabolismo , Vibración , Entropía , Simulación de Dinámica Molecular , Muramidasa/química , Conformación Proteica
15.
Soft Matter ; 11(11): 2183-92, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25639345

RESUMEN

The extent and nature of thermal fluctuations in the innovative class of cross-linked polymers called cyclodextrin nanosponges (CDNS) are investigated, on the picosecond time scale, through elastic and quasielastic neutron scattering experiments. Nanosponges are complex 3D polymer networks where covalent bonds connecting different cyclodextrin (CD) units and intra- and inter-molecular hydrogen-bond interactions cooperate to define the molecular architecture and fast dynamics of the polymer. The study presented here aims to clarify the nature of the conformational rearrangements activated by increasing temperature in the nanosponge polymer, and the constraints imposed by intra- and inter-molecular hydrogen-bond patterns on the internal dynamics of the macromolecule. The results suggest a picture, in which conformational rearrangements involving the torsion of the OH groups around the C-O bonds dominate the internal dynamics of the polymer over the picosecond time scale. Moreover, the estimated values of mean square displacements reveal that the motions of the hydrogen atoms in the nanosponges are progressively hampered as the cross-linking degree of the polymer is increased. Finally, the study of the molecular relaxations suggests a dynamical rearrangement of the hydrogen-bond networks, which is characterized by a jump diffusion motion of the more mobile hydrogen atoms belonging to the OH groups of the CD units. All these findings add further contribution to the rational comprehensive view of the dynamics of these macromolecules, which may be particularly beneficial in designing new drug-delivery systems with tuneable inclusion/release properties.

16.
Biochim Biophys Acta ; 1830(10): 4974-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850562

RESUMEN

METHODS: Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of ß-lactoglobulin (ßLG) in aqueous solution. BACKGROUND: ßLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH3. RESULTS: High-pressure structural results show that the dimer-monomer equilibrium, as well as the protein-protein interactions, are only slightly perturbed by pressure, and ßLG unfolding is observed above a threshold value of 3000bar. In the same range of pressure, dynamical results put in evidence a slowing down of the protein dynamics in the picosecond timescale and a loss of rigidity of the ßLG structure. This dynamical behavior can be related to the onset of unfolding processes, probably promoted from water penetration in the hydrophobic cavity. GENERAL SIGNIFICANCE: Results suggest that density and compressibility of water molecules in contact with the protein are key parameters to regulate the protein flexibility.


Asunto(s)
Presión Hidrostática , Lactoglobulinas/química , Conformación Proteica
17.
J Phys Chem Lett ; 15(5): 1435-1441, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38291814

RESUMEN

Molecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the Escherichia coli proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death. Global roto-translational motions turn out to be the main factor distinguishing the bacterial dynamical properties. We ascribe this behavior to the difference in the average proteome net charge, which becomes less negative for increasing bacterial thermal stability. We propose that the chemical-physical properties of the cytoplasm and the global dynamics of the resulting proteome are fine-tuned by evolution to uphold optimal thermal stability conditions.


Asunto(s)
Simulación de Dinámica Molecular , Proteoma , Temperatura , Escherichia coli
18.
RSC Adv ; 14(31): 22393-22402, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39010927

RESUMEN

3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl2) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS). Circular dichroism, Raman and infrared (IR) spectroscopies were used to investigate the transitions of secondary structure in silk I and silk II as the pH of the solvent and the sonication time were changed. We showed that a solvent with low pH (e.g. 4) maintains the silk I ß-turn structure; in contrast solvent with higher pH (e.g. 7.4) promotes ß-sheet features of silk II. Ultrasonic treatment facilitates the transition to water stable silk II only for the SF redissolved in PBS. SF from pH 7.4 solution has been printed using extrusion-based 3D printing. A self-powered memristor was realized, comprising an SF-based electric generator and an SF 3D-printed memristive unit connected in series. By exploiting the piezoelectric properties of silk II with higher ß-sheet content and Ca2+ ion transport phenomena, the application of an input voltage driven by a SF generator to SF 3D printed holey structures induces a variation from an initial low resistance state (LRS) to a high resistance state (HRS) that recovers in a few minutes, mimicking the transient memory, also known as short-term memory. Thanks to this holistic approach, these findings can contribute to the development of self-powered neuromorphic networks based on biomaterials with memory capabilities.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124684, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981290

RESUMEN

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments. Our multi-technique approach is based on the combined use of a set of contactless spectroscopic tools. Circular dichroism and UV resonance Raman spectroscopy probe ligand-induced conformational changes in the G4 sequence, while UV-visible absorption, coupled with steady-state fluorescence spectroscopy, provides further insights into the electronic features of the complex, exploiting the photoresponsive properties of BRACO19. Overall, we find that modifying the topology of the unbound Tel22 through cations (K+ or Na+), serves as a critical determinant for ligand interactions and binding modes, thus influencing the HT-G4's assembly capabilities. Furthermore, we show how fluorescence serves as a valuable probe for recognizing cation-driven multimeric structures, which may be present in living organisms, giving rise to pathological forms.


Asunto(s)
Dicroismo Circular , G-Cuádruplex , Espectrometría de Fluorescencia , Espectrometría Raman , Telómero , Humanos , Telómero/metabolismo , Telómero/química , Ligandos , Espectrofotometría Ultravioleta , ADN/metabolismo , ADN/química , Acridinas
20.
J Phys Chem Lett ; 15(20): 5543-5548, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38752860

RESUMEN

Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered ß-casein. Moreover, we address the influence of water, glycerol, and glucose, which create progressively more viscous matrices around the protein surface. By comparing the protein thermal fluctuations, we find that the internal dynamics of thermolysin are less affected by the environment compared to lysozyme and ß-casein. We ascribe this behavior to the protein dynamic personality, i.e., to the stiffer dynamics of the thermophilic protein that contrasts the influence of the environment. Remarkably, lysozyme and thermolysin in all molecular environments reach a critical common flexibility when approaching the calorimetric melting temperature.


Asunto(s)
Caseínas , Muramidasa , Termolisina , Muramidasa/química , Muramidasa/metabolismo , Termolisina/química , Termolisina/metabolismo , Caseínas/química , Glicerol/química , Agua/química , Glucosa/química , Difracción de Neutrones , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA