Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 49(6): 1116-1131.e7, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30446387

RESUMEN

Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation. Butyrate produced in the gut following LGG ingestion, or butyrate fed directly to germ-free mice, induced the expansion of intestinal and bone marrow (BM) regulatory T (Treg) cells. Interaction of BM CD8+ T cells with Treg cells resulted in increased secretion of Wnt10b, a bone anabolic Wnt ligand. Mechanistically, Treg cells promoted the assembly of a NFAT1-SMAD3 transcription complex in CD8+ cells, which drove expression of Wnt10b. Reducing Treg cell numbers, or reconstitution of TCRß-/- mice with CD8+ T cells from Wnt10b-/- mice, prevented butyrate-induced bone formation and bone mass acquisition. Thus, butyrate concentrations regulate bone anabolism via Treg cell-mediated regulation of CD8+ T cell Wnt10b production.


Asunto(s)
Butiratos/farmacología , Osteogénesis/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Proteínas Wnt/metabolismo , Animales , Butiratos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Comunicación Celular , Proliferación Celular/efectos de los fármacos , Femenino , Lacticaseibacillus rhamnosus/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Probióticos/administración & dosificación , Probióticos/metabolismo , Linfocitos T Reguladores/citología , Proteínas Wnt/genética
2.
EMBO Rep ; 19(1): 156-171, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158349

RESUMEN

Teriparatide is a bone anabolic treatment for osteoporosis, modeled in animals by intermittent PTH (iPTH) administration, but the cellular and molecular mechanisms of action of iPTH are largely unknown. Here, we show that Teriparatide and iPTH cause a ~two-threefold increase in the number of regulatory T cells (Tregs) in humans and mice. Attesting in vivo relevance, blockade of the Treg increase in mice prevents the increase in bone formation and trabecular bone volume and structure induced by iPTH Therefore, increasing the number of Tregs is a pivotal mechanism by which iPTH exerts its bone anabolic activity. Increasing Tregs pharmacologically may represent a novel bone anabolic therapy, while iPTH-induced Treg increase may find applications in inflammatory conditions and transplant medicine.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Hormonas y Agentes Reguladores de Calcio/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Teriparatido/uso terapéutico , Anciano , Animales , Biomarcadores/metabolismo , Calcio/uso terapéutico , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Recuento de Linfocitos , Ratones , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología , Ovariectomía , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Resultado del Tratamiento , Vitamina D/análogos & derivados , Vitamina D/uso terapéutico
3.
J Clin Densitom ; 22(1): 1-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30366683

RESUMEN

The Santa Fe Bone Symposium is an annual meeting devoted to clinical applications of recent advances in skeletal research. The 19th Santa Fe Bone Symposium convened August 3-4, 2018, in Santa Fe, New Mexico, USA. Attendees included physicians of many specialties, fellows in training, advanced practice providers, clinical researchers, and bone density technologists. The format consisted of lectures, case presentations by endocrinology fellows, and panel discussions, with all involving extensive interactive discussions. Topics were diverse, including an evolutionary history of calcium homeostasis, osteoporosis treatment in the very old, optimizing outcomes with orthopedic surgery, microbiome and bone, new strategies for combination and sequential therapy of osteoporosis, exercise as medicine, manifestations of parathyroid hormone excess and deficiency, parathyroid hormone as a therapeutic agent, cell senescence and bone health, and managing patients outside clinical practice guidelines. The National Bone Health Alliance conducted a premeeting on development of fracture liaison services. A workshop was devoted to Bone Health TeleECHO (Bone Health Extension for Community Healthcare Outcomes), a strategy of ongoing medical education for healthcare professions to expand capacity to deliver best practice skeletal healthcare in underserved communities and reduce the osteoporosis treatment gap.


Asunto(s)
Terapia por Ejercicio , Fracturas Espontáneas/terapia , Osteoporosis/fisiopatología , Osteoporosis/terapia , Hormona Paratiroidea/farmacología , Fracturas de la Columna Vertebral/terapia , Factores de Edad , Animales , Remodelación Ósea , Huesos/metabolismo , Senescencia Celular , Curación de Fractura/efectos de los fármacos , Fracturas Espontáneas/etiología , Fracturas Espontáneas/prevención & control , Humanos , Microbiota/fisiología , Uso Fuera de lo Indicado , Osteoporosis/complicaciones , Hormona Paratiroidea/uso terapéutico , Guías de Práctica Clínica como Asunto , Probióticos/uso terapéutico , Factores de Riesgo , Fracturas de la Columna Vertebral/etiología , Fusión Vertebral
4.
Calcif Tissue Int ; 102(5): 512-521, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29018933

RESUMEN

Osteomicrobiology refers to the role of microbiota in bone health and the mechanisms by which the microbiota regulates post-natal skeletal development, bone aging, and pathologic bone loss. Here, we review recent reports linking gut microbiota to changes in bone phenotype. A pro-inflammatory cytokine milieu drives bone resorption in conditions such as sex steroid hormone deficiency. The response of the immune system to activation by the microbiome results in increased circulating osteoclastogenic cytokines in a T cell-dependent mechanism. Additionally, gut microbiota affect bone homeostasis through nutrient absorption, mediation of the IGF-1 pathway, and short chain fatty acid and metabolic products. Manipulation of microbiota through prebiotics or probiotics reduces inflammatory cytokine production, leading to changes in bone density. One mechanism of probiotic action is through upregulating tight junction proteins, increasing the strength of the gut epithelial layer, and leading to less antigen presentation and less activation of intestinal immune cells. Thus, prebiotics or probiotics may represent a future therapeutic avenue for ameliorating the risk of postmenopausal bone loss in humans.


Asunto(s)
Huesos/inmunología , Intestinos/inmunología , Microbiota/inmunología , Osteoporosis Posmenopáusica/inmunología , Animales , Humanos , Sistema Inmunológico/inmunología , Prebióticos
5.
Curr Osteoporos Rep ; 15(3): 135-141, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28421466

RESUMEN

PURPOSE OF REVIEW: This review summarizes studies into the permissive role of T cells in the bone catabolic effects of hyperparathyroidism and parathyroid hormone (PTH). RECENT FINDINGS: Work in animals combined with recent translational studies in humans now highlight the potent amplificatory action of T cells on PTH-induced bone resorption. Mechanistic animal studies reveal a complex pathway by which PTH exploits natural self-renewal functions of CD4+ T cells, to drive TNFα production that promotes formation of IL-17A secreting Th17 T cells. TNFα and IL-17 further amplify osteoblastic receptor activator of NF-κB ligand (RANKL) production and down-modulate osteoprotegerin (OPG), establishing conditions propitious for osteoclastic bone resorption. These findings are consistent with, and add to, the traditional view of PTH-induced bone loss involving only osteoblast-lineage cells. T cells potently amplify traditional pathways and provide permissive costimulatory signals to bone marrow stromal cells, facilitating the development of an increased RANKL/OPG ratio favourable to bone resorption and bone loss.


Asunto(s)
Resorción Ósea/inmunología , Hiperparatiroidismo/inmunología , Hormona Paratiroidea/inmunología , Linfocitos T/inmunología , Resorción Ósea/metabolismo , Linfocitos T CD4-Positivos/inmunología , Humanos , Hiperparatiroidismo/metabolismo , Interleucina-17/inmunología , Osteoclastos , Osteoprotegerina/inmunología , Enfermedades de las Paratiroides/inmunología , Enfermedades de las Paratiroides/metabolismo , Hormona Paratiroidea/metabolismo , Ligando RANK/inmunología , Células Th17/inmunología , Factor de Necrosis Tumoral alfa/inmunología
6.
Blood ; 122(14): 2346-57, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23954891

RESUMEN

Estrogen deficiency expands hemopoietic stem and progenitor cells (HSPCs) and mature blood lineages, but the involved mechanism and the affected HSPC populations are mostly unknown. Here we show that ovariectomy (ovx) expands short-term HSPCs (ST-HSPCs) and improves blood cell engraftment and host survival after bone marrow (BM) transplantation through a dual role of the T-cell costimulatory molecule CD40 ligand (CD40L). This surface receptor is required for ovx to stimulate T-cell production of Wnt10b, a Wnt ligand that activates Wnt signaling in HSPCs and stromal cells (SCs). Moreover, CD40L is required for ovx to increase SC production of the hemopoietic cytokines interleukin (IL)-6, IL-7, and granulocyte macrophage-colony-stimulating factor. Attesting to the relevance of CD40L and Wnt10b, ovx fails to expand ST-HSPCs in CD40L-null mice and in animals lacking global or T-cell expression of Wnt10b. In summary, T cells expressed CD40L, and the resulting increased production of Wnt10b and hemopoietic cytokines by T cells and SCs, respectively, plays a pivotal role in the mechanism by which ovx regulates hemopoiesis. The data suggest that antiestrogens may represent pharmacological targets to improve ST-HSPC function through activation of the microenvironment.


Asunto(s)
Ligando de CD40/biosíntesis , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Ovariectomía , Linfocitos T/metabolismo , Proteínas Wnt/biosíntesis , Animales , Trasplante de Médula Ósea/inmunología , Femenino , Citometría de Flujo , Células Madre Hematopoyéticas/inmunología , Ratones , Ratones Noqueados , Linfocitos T/inmunología , Proteínas Wnt/inmunología
7.
Proc Natl Acad Sci U S A ; 109(12): E725-33, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22393015

RESUMEN

Intermittent parathyroid hormone (iPTH) treatment stimulates T-cell production of the osteogenic Wnt ligand Wnt10b, a factor required for iPTH to activate Wnt signaling in osteoblasts and stimulate bone formation. However, it is unknown whether iPTH induces Wnt10b production and bone anabolism through direct activation of the parathyroid hormone (PTH)/PTH-related protein receptor (PPR) in T cells. Here, we show that conditional silencing of PPR in T cells blunts the capacity of iPTH to induce T-cell production of Wnt10b; activate Wnt signaling in osteoblasts; expand the osteoblastic pool; and increase bone turnover, bone mineral density, and trabecular bone volume. These findings demonstrate that direct PPR signaling in T cells plays an important role in PTH-induced bone anabolism by promoting T-cell production of Wnt10b and suggest that T cells may provide pharmacological targets for bone anabolism.


Asunto(s)
Huesos/metabolismo , Hormona Paratiroidea/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Animales , Densidad Ósea , Femenino , Silenciador del Gen , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Osteoblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Microtomografía por Rayos X/métodos
8.
Blood ; 120(22): 4352-62, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22955916

RESUMEN

Intermittent parathyroid hormone (iPTH) treatment expands hemopoietic stem and progenitor cells (HSPCs), but the involved mechanisms and the affected HSPC populations are mostly unknown. Here we show that T cells are required for iPTH to expand short-term HSPCs (ST-HSPCs) and improve blood cell engraftment and host survival after BM transplantation. Silencing of PTH/PTH-related protein receptor (PPR) in T cells abrogates the effects of iPTH, thus demonstrating a requirement for direct PPR signaling in T cells. Mechanistically, iPTH expands ST-HSPCs by activating Wnt signaling in HSPCs and stromal cells (SCs) through T-cell production of the Wnt ligand Wnt10b. Attesting to the relevance of Wnt10b, iPTH fails to expand ST-HSPCs in mice with Wnt10b(-/-) T cells. Moreover, iPTH fails to promote engraftment and survival after BM transplantation in Wnt10b null mice. In summary, direct PPR signaling in T cells and the resulting production of Wnt10b play a pivotal role in the mechanism by which iPTH expands ST-HSPCs. The data suggest that T cells may provide pharmacologic targets for HSPC expansion.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Hormona Paratiroidea/farmacología , Linfocitos T/fisiología , Animales , Trasplante de Médula Ósea , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/fisiología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/efectos de los fármacos , Factores de Tiempo , Proteínas Wnt/genética
9.
Proc Natl Acad Sci U S A ; 108(2): 768-73, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187391

RESUMEN

The bone loss induced by ovariectomy (ovx) has been linked to increased production of osteoclastogenic cytokines by bone marrow cells, including T cells and stromal cells (SCs). It is presently unknown whether regulatory interactions between these lineages contribute to the effects of ovx in bone, however. Here, we show that the T-cell costimulatory molecule CD40 ligand (CD40L) is required for ovx to expand SCs; promote osteoblast proliferation and differentiation; regulate the SC production of the osteoclastogenic factors macrophage colony-stimulating factor, receptor activator of nuclear factor-κB ligand, and osteoprotegerin; and up-regulate osteoclast formation. CD40L is also required for ovx to activate T cells and stimulate their production of TNF. Accordingly, ovx fails to promote bone loss and increase bone resorption in mice depleted of T cells or lacking CD40L. Therefore, cross-talk between T cells and SCs mediated by CD40L plays a pivotal role in the disregulation of osteoblastogenesis and osteoclastogenesis induced by ovx.


Asunto(s)
Ligando de CD40/metabolismo , Osteoblastos/citología , Osteoclastos/citología , Linfocitos T/citología , Animales , Técnicas de Cocultivo , Estrógenos/metabolismo , Humanos , Ligandos , Ratones , FN-kappa B/metabolismo , Osteoporosis/metabolismo , Osteoprotegerina/metabolismo , Ovariectomía/métodos , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Clin Invest ; 134(10)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530358

RESUMEN

Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos T Reguladores , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Femenino , Masculino , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Desarrollo Óseo/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Bacteroides , Trasplante de Microbiota Fecal , Humanos
11.
Nat Rev Nephrol ; 19(10): 646-657, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37488276

RESUMEN

Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Insuficiencia Renal Crónica , Humanos , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Disbiosis/complicaciones , Calidad de Vida , Insuficiencia Renal Crónica/metabolismo , Inflamación , Hormona Paratiroidea
12.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37079375

RESUMEN

The intake of dietary phosphate far exceeds recommended levels; however, the long-term health consequences remain relatively unknown. Here, the chronic physiological response to sustained elevated and reduced dietary phosphate consumption was investigated in mice. Although serum phosphate levels were brought into homeostatic balance, the prolonged intake of a high-phosphate diet dramatically and negatively impacted bone volume; generated a sustained increase in the phosphate responsive circulating factors FGF23, PTH, osteopontin and osteocalcin; and produced a chronic low-grade inflammatory state in the BM, marked by increased numbers of T cells expressing IL-17a, RANKL, and TNF-α. In contrast, a low-phosphate diet preserved trabecular bone while increasing cortical bone volume over time, and it reduced inflammatory T cell populations. Cell-based studies identified a direct response of T cells to elevated extracellular phosphate. Neutralizing antibodies against proosteoclastic cytokines RANKL, TNF-α, and IL-17a blunted the high-phosphate diet-induced bone loss identifying bone resorption as a regulatory mechanism. Collectively, this study illuminates that habitual consumption of a high-phosphate diet in mice induces chronic inflammation in bone, even in the absence of elevated serum phosphate. Furthermore, the study supports the concept that a reduced phosphate diet may be a simple yet effective strategy to reduce inflammation and improve bone health during aging.


Asunto(s)
Resorción Ósea , Fósforo Dietético , Ratones , Animales , Interleucina-17 , Factor de Necrosis Tumoral alfa , Linfocitos T , Citocinas , Inflamación , Fosfatos
13.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36881482

RESUMEN

IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation. When the microbiota contained the Th17 cell-inducing taxon segmented filamentous bacteria (SFB), activation of γδ T cells was followed by expansion of intestinal Th17 cells, their migration to the callus, and improved fracture repair. Mechanistically, fractures increased the S1P receptor 1-mediated (S1PR1-mediated) egress of Th17 cells from the intestine and enhanced their homing to the callus through a CCL20-mediated mechanism. Fracture repair was impaired by deletion of γδ T cells, depletion of the microbiome by antibiotics (Abx), blockade of Th17 cell egress from the gut, or Ab neutralization of Th17 cell influx into the callus. These findings demonstrate the relevance of the microbiome and T cell trafficking for fracture repair. Modifications of microbiome composition via Th17 cell-inducing bacteriotherapy and avoidance of broad-spectrum Abx may represent novel therapeutic strategies to optimize fracture healing.


Asunto(s)
Microbiota , Células Th17 , Ratones , Animales , Curación de Fractura , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta/genética
14.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425728

RESUMEN

Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe 2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe 2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.

15.
Redox Biol ; 67: 102892, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741044

RESUMEN

Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Masculino , Femenino , Humanos , Ferroptosis/genética , Carcinoma Hepatocelular/metabolismo , Factores Sexuales , Caracteres Sexuales , Neoplasias Hepáticas/metabolismo , Hepatocitos/metabolismo , Hierro/metabolismo
16.
Front Endocrinol (Lausanne) ; 14: 1237727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810879

RESUMEN

The gut microbiome affects the inflammatory environment through effects on T-cells, which influence the production of immune mediators and inflammatory cytokines that stimulate osteoclastogenesis and bone loss in mice. However, there are few large human studies of the gut microbiome and skeletal health. We investigated the association between the human gut microbiome and high resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia in two large cohorts; Framingham Heart Study (FHS [n=1227, age range: 32 - 89]), and the Osteoporosis in Men Study (MrOS [n=836, age range: 78 - 98]). Stool samples from study participants underwent amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene. The resulting 16S rRNA sequencing data were processed separately for each cohort, with the DADA2 pipeline incorporated in the16S bioBakery workflow. Resulting amplicon sequence variants were assigned taxonomies using the SILVA reference database. Controlling for multiple covariates, we tested for associations between microbial taxa abundances and HR-pQCT measures using general linear models as implemented in microbiome multivariable association with linear model (MaAslin2). Abundance of 37 microbial genera in FHS, and 4 genera in MrOS, were associated with various skeletal measures (false discovery rate [FDR] ≤ 0.1) including the association of DTU089 with bone measures, which was independently replicated in the two cohorts. A meta-analysis of the taxa-bone associations further revealed (FDR ≤ 0.25) that greater abundances of the genera; Akkermansia and DTU089, were associated with lower radius total vBMD, and tibia cortical vBMD respectively. Conversely, higher abundances of the genera; Lachnospiraceae NK4A136 group, and Faecalibacterium were associated with greater tibia cortical vBMD. We also investigated functional capabilities of microbial taxa by testing for associations between predicted (based on 16S rRNA amplicon sequence data) metabolic pathways abundance and bone phenotypes in each cohort. While there were no concordant functional associations observed in both cohorts, a meta-analysis revealed 8 pathways including the super-pathway of histidine, purine, and pyrimidine biosynthesis, associated with bone measures of the tibia cortical compartment. In conclusion, our findings suggest that there is a link between the gut microbiome and skeletal metabolism.


Asunto(s)
Densidad Ósea , Microbioma Gastrointestinal , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Huesos , Densidad Ósea/genética , Estudios de Cohortes , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética
17.
JBMR Plus ; 6(7): e10636, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35866149

RESUMEN

Cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) inhibitors such as pentoxifylline (PTX) suppress cAMP degradation and promote cAMP-dependent signal transduction. PDE inhibitors increase bone formation and bone mass in preclinical models and are used clinically to treat psoriatic arthritis by targeting inflammatory mediators including activated T cells. T cell activation requires two signals: antigen-dependent CD3-activation, which stimulates cAMP production; and CD28 co-stimulation, which downregulates cAMP-signaling, through PDE activation. PDE-inhibitors consequently suppress T cell activation by disrupting CD28 co-stimulation. Interestingly, we have reported that when CD8+ T cells are activated in the absence of CD28 co-stimulation, they secrete Wnt-10b, a bone anabolic Wnt ligand that promotes bone formation. In the present study, we investigated whether the bone anabolic activity of the PDE-inhibitor PTX, has an immunocentric basis, involving Wnt-10b production by CD8+ T cells. When wild-type (WT) mice were administered PTX, biochemical markers of both bone resorption and formation were significantly increased, with net bone gain in the axial skeleton, as quantified by micro-computed tomography (µCT). By contrast, PTX increased only bone resorption in T cell knockout (KO) mice, causing net bone loss. Reconstituting T cell-deficient mice with WT, but not Wnt-10b knockout (KO) CD8+ T cells, rescued bone formation and prevented bone loss. To study the role of cAMP signaling in Wnt-10b expression, reverse-transcription polymerase chain reaction (RT-PCR) and luciferase-reporter assays were performed using primary T cells. PDE inhibitors intensified Wnt-10b promoter activity and messenger RNA (mRNA) accumulation in CD3 and CD28 activated CD8+ T cells. In contrast, inhibiting the cAMP pathway mediators protein kinase A (PKA) and cAMP response element-binding protein (CREB), suppressed Wnt-10b expression by T cells activated in the absence of CD28 co-stimulation. In conclusion, the data demonstrate a key role for Wnt-10b production by CD8+ T cells in the bone anabolic response to PDE-inhibitors and reveal competing T cell-independent pro-resorptive properties of PTX, which dominate under T cell-deficient conditions. Selective targeting of CD8+ T cells by PDE inhibitors may be a beneficial approach for promoting bone regeneration in osteoporotic conditions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

18.
Nat Commun ; 13(1): 4820, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35973996

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) are expressed in human osteoblasts and mediate fracture healing. BDNF/TrkB signaling activates Akt that phosphorylates and inhibits asparagine endopeptidase (AEP), which regulates the differentiation fate of human bone marrow stromal cells (hBMSC) and is altered in postmenopausal osteoporosis. Here we show that R13, a small molecular TrkB receptor agonist prodrug, inhibits AEP and promotes bone formation. Though both receptor activator of nuclear factor kappa-Β ligand (RANK-L) and osteoprotegerin (OPG) induced by ovariectomy (OVX) remain comparable between WT and BDNF+/- mice, R13 treatment significantly elevates OPG in both mice without altering RANKL, blocking trabecular bone loss. Strikingly, both R13 and anti-RANK-L exhibit equivalent therapeutic efficacy. Moreover, OVX increases RANK-L and OPG in WT and AEP KO mice with RANK-L/OPG ratio lower in the latter than the former, attenuating bone turnover. 7,8-DHF, released from R13, activates TrkB and its downstream effector CREB, which is critical for OPG augmentation. Consequently, 7,8-DHF represses C/EBPß/AEP pathway, inhibiting RANK-L-induced RAW264.7 osteoclastogenesis. Therefore, our findings support that R13 exerts its therapeutic efficacy toward osteoporosis via inhibiting AEP and escalating OPG.


Asunto(s)
Osteoprotegerina , Profármacos , Animales , Factor Neurotrófico Derivado del Encéfalo , Proteínas Portadoras , Cisteína Endopeptidasas , Femenino , Humanos , Ratones , FN-kappa B , Osteoclastos/fisiología , Profármacos/farmacología , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Receptor trkB
19.
J Clin Invest ; 132(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35503658

RESUMEN

Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma.


Asunto(s)
Microbioma Gastrointestinal , Melanoma Experimental , Osteólisis , Animales , Antibacterianos/farmacología , Desarrollo Óseo , Humanos , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Calidad de Vida , Células TH1/patología
20.
J Clin Endocrinol Metab ; 106(3): 636-645, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33254225

RESUMEN

Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.


Asunto(s)
Huesos/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Hormona Paratiroidea/farmacología , Animales , Desarrollo Óseo/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/fisiología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Remodelación Ósea/efectos de los fármacos , Huesos/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA